
Chapter 2
Inferences in Regression
and Correlation Analysis

In this chapter, we first take up inferences concerning the regression parameters β0 and
β1, considering both interval estimation of these parameters and tests about them. We then
discuss interval estimation of the mean E{Y } of the probability distribution of Y , for given
X , prediction intervals for a new observation Y , confidence bands for the regression line,
the analysis of variance approach to regression analysis, the general linear test approach,
and descriptive measures of association. Finally, we take up the correlation coefficient, a
measure of association between X and Y when both X and Y are random variables.

Throughout this chapter (excluding Section 2.11), and in the remainder of Part I unless
otherwise stated, we assume that the normal error regression model (1.24) is applicable.
This model is:

Yi = β0 + β1 Xi + εi (2.1)

where:

β0 and β1 are parameters

Xi are known constants

εi are independent N (0, σ 2)

2.1 Inferences Concerning β1

Frequently, we are interested in drawing inferences about β1, the slope of the regression
line in model (2.1). For instance, a market research analyst studying the relation between
sales (Y ) and advertising expenditures (X) may wish to obtain an interval estimate of β1

because it will provide information as to how many additional sales dollars, on the average,
are generated by an additional dollar of advertising expenditure.

At times, tests concerning β1 are of interest, particularly one of the form:

H0: β1 = 0

Ha: β1 �= 0
40
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FIGURE 2.1
Regression
Model (2.1)
when β1 = 0.

Y

X

E{Y } � �0

The reason for interest in testing whether or not β1 = 0 is that, when β1 = 0, there is no
linear association between Y and X . Figure 2.1 illustrates the case when β1 = 0. Note that
the regression line is horizontal and that the means of the probability distributions of Y are
therefore all equal, namely:

E{Y } = β0 + (0)X = β0

For normal error regression model (2.1), the condition β1 = 0 implies even more than
no linear association between Y and X . Since for this model all probability distributions of
Y are normal with constant variance, and since the means are equal when β1 = 0, it follows
that the probability distributions of Y are identical when β1 = 0. This is shown in Figure 2.1.
Thus, β1 = 0 for the normal error regression model (2.1) implies not only that there is no
linear association between Y and X but also that there is no relation of any type between
Y and X , since the probability distributions of Y are then identical at all levels of X .

Before discussing inferences concerning β1 further, we need to consider the sampling
distribution of b1, the point estimator of β1.

Sampling Distribution of b1

The point estimator b1 was given in (1.10a) as follows:

b1 =
∑

(Xi − X̄)(Yi − Ȳ )
∑

(Xi − X̄)2
(2.2)

The sampling distribution of b1 refers to the different values of b1 that would be obtained
with repeated sampling when the levels of the predictor variable X are held constant from
sample to sample.

For normal error regression model (2.1), the sampling distribution
of b1 is normal, with mean and variance:

(2.3)

E{b1} = β1 (2.3a)

σ 2{b1} = σ 2

∑
(Xi − X̄)2

(2.3b)

To show this, we need to recognize that b1 is a linear combination of the observations Yi .
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b1 as Linear Combination of the Yi . It can be shown that b1, as defined in (2.2), can be
expressed as follows:

b1 =
∑

ki Yi (2.4)

where:

ki = Xi − X̄
∑

(Xi − X̄)2
(2.4a)

Observe that the ki are a function of the Xi and therefore are fixed quantities since the Xi

are fixed. Hence, b1 is a linear combination of the Yi where the coefficients are solely a
function of the fixed Xi .

The coefficients ki have a number of interesting properties that will be used later:
∑

ki = 0 (2.5)
∑

ki Xi = 1 (2.6)
∑

k2
i = 1

∑
(Xi − X̄)2

(2.7)

Comments
1. To show that b1 is a linear combination of the Yi with coefficients ki , we first prove:

∑
(Xi − X̄)(Yi − Ȳ ) =

∑
(Xi − X̄)Yi (2.8)

This follows since:
∑

(Xi − X̄)(Yi − Ȳ ) =
∑

(Xi − X̄)Yi −
∑

(Xi − X̄)Ȳ

But
∑

(Xi − X̄)Ȳ = Ȳ
∑

(Xi − X̄) = 0 since
∑

(Xi − X̄) = 0, Hence, (2.8) holds.
We now express b1 using (2.8) and (2.4a):

b1 =
∑

(Xi − X̄)(Yi − Ȳ )
∑

(Xi − X̄)2
=

∑
(Xi − X̄)Yi∑
(Xi − X̄)2

=
∑

ki Yi

2. The proofs of the properties of the ki are direct. For example, property (2.5) follows because:

∑
ki =

∑[
Xi − X̄

∑
(Xi − X̄)2

]

= 1
∑

(Xi − X̄)2

∑
(Xi − X̄) = 0

∑
(Xi − X̄)2

= 0

Similarly, property (2.7) follows because:

∑
k2

i =
∑[

Xi − X̄
∑

(Xi − X̄)2

]2

= 1
[∑

(Xi − X̄)2
]2

∑
(Xi − X̄)2 = 1

∑
(Xi − X̄)2

Normality. We return now to the sampling distribution of b1 for the normal error regres-
sion model (2.1). The normality of the sampling distribution of b1 follows at once from the
fact that b1 is a linear combination of the Yi . The Yi are independently, normally distributed
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according to model (2.1), and (A.40) in Appendix A states that a linear combination of
independent normal random variables is normally distributed.

Mean. The unbiasedness of the point estimator b1, stated earlier in the Gauss-Markov
theorem (1.11), is easy to show:

E{b1} = E
{∑

ki Yi

}
=

∑
ki E{Yi } =

∑
ki (β0 + β1 Xi )

= β0

∑
ki + β1

∑
ki Xi

By (2.5) and (2.6), we then obtain E{b1} = β1.

Variance. The variance of b1 can be derived readily. We need only remember that the
Yi are independent random variables, each with variance σ 2, and that the ki are constants.
Hence, we obtain by (A.31):

σ 2{b1} = σ 2
{∑

ki Yi

}
=

∑
k2

i σ
2{Yi }

=
∑

k2
i σ

2 = σ 2
∑

k2
i

= σ 2 1
∑

(Xi − X̄)2

The last step follows from (2.7).

Estimated Variance. We can estimate the variance of the sampling distribution of b1:

σ 2{b1} = σ 2

∑
(Xi − X̄)2

by replacing the parameter σ 2 with MSE, the unbiased estimator of σ 2:

s2{b1} = MSE
∑

(Xi − X̄)2
(2.9)

The point estimator s2{b1} is an unbiased estimator of σ 2{b1}. Taking the positive square
root, we obtain s{b1}, the point estimator of σ {b1}.

Comment
We stated in theorem (1.11) that b1 has minimum variance among all unbiased linear estimators of
the form:

β̂1 =
∑

ci Yi

where the ci are arbitrary constants. We now prove this. Since β̂1 is required to be unbiased, the
following must hold:

E{β̂1} = E
{∑

ci Yi

}
=

∑
ci E{Yi } = β1

Now E{Yi } = β0 + β1 Xi by (1.2), so the above condition becomes:

E{β̂1} =
∑

ci (β0 + β1 Xi ) = β0

∑
ci + β1

∑
ci Xi = β1
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For the unbiasedness condition to hold, the ci must follow the restrictions:
∑

ci = 0
∑

ci Xi = 1

Now the variance of β̂1 is, by (A.31):

σ 2{β̂1} =
∑

c2
i σ

2{Yi } = σ 2
∑

c2
i

Let us define ci = ki +di , where the ki are the least squares constants in (2.4a) and the di are arbitrary
constants. We can then write:

σ 2{β̂1} = σ 2
∑

c2
i = σ 2

∑
(ki + di )

2 = σ 2
(∑

k2
i +

∑
d2

i + 2
∑

ki di

)

We know that σ 2
∑

k2
i = σ 2{b1} from our proof above. Further,

∑
ki di = 0 because of the restrictions

on the ki and ci above:
∑

ki di =
∑

ki (ci − ki )

=
∑

ci ki −
∑

k2
i

=
∑

ci

[
Xi − X̄

∑
(Xi − X̄)2

]

− 1
∑

(Xi − X̄)2

=
∑

ci Xi − X̄
∑

ci∑
(Xi − X̄)2

− 1
∑

(Xi − X̄)2
= 0

Hence, we have:

σ 2{β̂1} = σ 2{b1} + σ 2
∑

d2
i

Note that the smallest value of
∑

d2
i is zero. Hence, the variance of β̂1 is at a minimum when∑

d2
i = 0. But this can only occur if all di = 0, which implies ci ≡ ki . Thus, the least squares

estimator b1 has minimum variance among all unbiased linear estimators.

Sampling Distribution of (b1 − β1)/s{b1}
Since b1 is normally distributed, we know that the standardized statistic (b1 − β1)/σ {b1}
is a standard normal variable. Ordinarily, of course, we need to estimate σ {b1} by s{b1},
and hence are interested in the distribution of the statistic (b1 − β1)/s{b1}. When a statistic
is standardized but the denominator is an estimated standard deviation rather than the true
standard deviation, it is called a studentized statistic. An important theorem in statistics
states the following about the studentized statistic (b1 − β1)/s{b1}:

b1 − β1

s{b1} is distributed as t (n − 2) for regression model (2.1) (2.10)

Intuitively, this result should not be unexpected. We know that if the observations Yi

come from the same normal population, (Ȳ −µ)/s{Ȳ } follows the t distribution with n − 1
degrees of freedom. The estimator b1, like Ȳ , is a linear combination of the observations Yi .
The reason for the difference in the degrees of freedom is that two parameters (β0 and β1)

need to be estimated for the regression model; hence, two degrees of freedom are lost here.
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Comment
We can show that the studentized statistic (b1 − β1)/s{b1} is distributed as t with n − 2 degrees of
freedom by relying on the following theorem:

For regression model (2.1), SSE/σ 2 is distributed as χ2 with n − 2
degrees of freedom and is independent of b0 and b1.

(2.11)

First, let us rewrite (b1 − β1)/s{b1} as follows:

b1 − β1

σ {b1} ÷ s{b1}
σ {b1}

The numerator is a standard normal variable z. The nature of the denominator can be seen by first
considering:

s2{b1}
σ 2{b1} =

MSE
∑

(Xi − X̄)2

σ 2

∑
(Xi − X̄)2

= MSE

σ 2
=

SSE

n − 2
σ 2

= SSE

σ 2(n − 2)
∼ χ2(n − 2)

n − 2

where the symbol ∼ stands for “is distributed as.” The last step follows from (2.11). Hence, we have:

b1 − β1

s{b1} ∼ z
√

χ2(n − 2)

n − 2

But by theorem (2.11), z and χ2 are independent since z is a function of b1 and b1 is independent of
SSE/σ 2 ∼ χ2. Hence, by (A.44), it follows that:

b1 − β1

s{b1} ∼ t (n − 2)

This result places us in a position to readily make inferences concerning β1.

Confidence Interval for β1

Since (b1 − β1)/s{b1} follows a t distribution, we can make the following probability
statement:

P{t (α/2; n − 2) ≤ (b1 − β1)/s{b1} ≤ t (1 − α/2; n − 2)} = 1 − α (2.12)

Here, t (α/2; n −2) denotes the (α/2)100 percentile of the t distribution with n −2 degrees
of freedom. Because of the symmetry of the t distribution around its mean 0, it follows that:

t (α/2; n − 2) = −t (1 − α/2; n − 2) (2.13)

Rearranging the inequalities in (2.12) and using (2.13), we obtain:

P{b1 − t (1 − α/2; n − 2)s{b1} ≤ β1 ≤ b1 + t (1 − α/2; n − 2)s{b1}} = 1 − α

(2.14)

Since (2.14) holds for all possible values of β1, the 1 − α confidence limits for β1 are:

b1 ± t (1 − α/2; n − 2)s{b1} (2.15)
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Example Consider the Toluca Company example of Chapter 1. Management wishes an estimate of
β1 with 95 percent confidence coefficient. We summarize in Table 2.1 the needed results
obtained earlier. First, we need to obtain s{b1}:

s2{b1} = MSE
∑

(Xi − X̄)2
= 2,384

19,800
= .12040

s{b1} = .3470

This estimated standard deviation is shown in the MINITAB output in Figure 2.2 in the
column labeled Stdev corresponding to the row labeled X. Figure 2.2 repeats the MINITAB
output presented earlier in Chapter 1 and contains some additional results that we will utilize
shortly.

For a 95 percent confidence coefficient, we require t (.975; 23). From Table B.2 in Ap-
pendix B, we find t (.975; 23) = 2.069. The 95 percent confidence interval, by (2.15), then is:

3.5702 − 2.069(.3470) ≤ β1 ≤ 3.5702 + 2.069(.3470)

2.85 ≤ β1 ≤ 4.29

Thus, with confidence coefficient .95, we estimate that the mean number of work hours
increases by somewhere between 2.85 and 4.29 hours for each additional unit in the lot.

Comment
In Chapter 1, we noted that the scope of a regression model is restricted ordinarily to some range of
values of the predictor variable. This is particularly important to keep in mind in using estimates of
the slope β1. In our Toluca Company example, a linear regression model appeared appropriate for
lot sizes between 20 and 120, the range of the predictor variable in the recent past. It may not be

TABLE 2.1
Results for
Toluca
Company
Example
Obtained in
Chapter 1.

n = 25 X̄ = 70.00
b0 = 62.37 b1 = 3.5702
Ŷ = 62.37 + 3.5702X SSE = 54,825∑

(Xi − X̄ )2 = 19,800 MSE = 2,384∑
(Yi − Ȳ )2 = 307,203

The regression equation is
Y = 62.4 + 3.57 X

Predictor Coef Stdev t-ratio p
Constant 62.37 26.18 2.38 0.026
X 3.5702 0.3470 10.29 0.000

s = 48.82 R-sq = 82.2% R-sq(adj) = 81.4%

Analysis of Variance

SOURCE DF SS MS F p
Regression 1 252378 252378 105.88 0.000
Error 23 54825 2384
Total 24 307203

FIGURE 2.2
Portion of
MINITAB
Regression
Output—
Toluca
Company
Example.
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reasonable to use the estimate of the slope to infer the effect of lot size on number of work hours far
outside this range since the regression relation may not be linear there.

Tests Concerning β1

Since (b1 − β1)/s{b1} is distributed as t with n − 2 degrees of freedom, tests concerning
β1 can be set up in ordinary fashion using the t distribution.

Example 1 Two-Sided Test A cost analyst in the Toluca Company is interested in testing, using
regression model (2.1), whether or not there is a linear association between work hours and
lot size, i.e., whether or not β1 = 0. The two alternatives then are:

H0: β1 = 0

Ha: β1 �= 0
(2.16)

The analyst wishes to control the risk of a Type I error at α = .05. The conclusion Ha could
be reached at once by referring to the 95 percent confidence interval for β1 constructed
earlier, since this interval does not include 0.

An explicit test of the alternatives (2.16) is based on the test statistic:

t∗ = b1

s{b1} (2.17)

The decision rule with this test statistic for controlling the level of significance at α is:

If |t∗| ≤ t (1 − α/2; n − 2), conclude H0

If |t∗| > t (1 − α/2; n − 2), conclude Ha
(2.18)

For the Toluca Company example, where α = .05, b1 = 3.5702, and s{b1} = .3470, we
require t (.975; 23) = 2.069. Thus, the decision rule for testing alternatives (2.16) is:

If |t∗| ≤ 2.069, conclude H0

If |t∗| > 2.069, conclude Ha

Since |t∗| = |3.5702/.3470| = 10.29 > 2.069, we conclude Ha , that β1 �= 0 or that
there is a linear association between work hours and lot size. The value of the test statistic,
t∗ = 10.29, is shown in the MINITAB output in Figure 2.2 in the column labeled t-ratio
and the row labeled X.

The two-sided P-value for the sample outcome is obtained by first finding the one-
sided P-value, P{t (23) > t∗ = 10.29}. We see from Table B.2 that this probability is
less than .0005. Many statistical calculators and computer packages will provide the actual
probability; it is almost 0, denoted by 0+. Thus, the two-sided P-value is 2(0+) = 0+.
Since the two-sided P-value is less than the specified level of significance α = .05, we
could conclude Ha directly. The MINITAB output in Figure 2.2 shows the P-value in the
column labeled p, corresponding to the row labeled X. It is shown as 0.000.

Comment
When the test of whether or not β1 = 0 leads to the conclusion that β1 �= 0, the association between
Y and X is sometimes described to be a linear statistical association.

Example 2 One-Sided Test Suppose the analyst had wished to test whether or not β1 is positive,
controlling the level of significance at α = .05. The alternatives then would be:

H0: β1 ≤ 0

Ha: β1 > 0
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and the decision rule based on test statistic (2.17) would be:

If t∗ ≤ t (1 − α; n − 2), conclude H0

If t∗ > t (1 − α; n − 2), conclude Ha

For α = .05, we require t (.95; 23) = 1.714. Since t∗ = 10.29 > 1.714, we would conclude
Ha , that β1 is positive.

This same conclusion could be reached directly from the one-sided P-value, which was
noted in Example 1 to be 0+. Since this P-value is less than .05, we would conclude Ha .

Comments
1. The P-value is sometimes called the observed level of significance.

2. Many scientific publications commonly report the P-value together with the value of the test
statistic. In this way, one can conduct a test at any desired level of significance α by comparing the
P-value with the specified level α.

3. Users of statistical calculators and computer packages need to be careful to ascertain whether
one-sided or two-sided P-values are reported. Many commonly used labels, such as PROB or P, do
not reveal whether the P-value is one- or two-sided.

4. Occasionally, it is desired to test whether or not β1 equals some specified nonzero value β10,
which may be a historical norm, the value for a comparable process, or an engineering specification.
The alternatives now are:

H0: β1 = β10

Ha : β1 �= β10
(2.19)

and the appropriate test statistic is:

t∗ = b1 − β10

s{b1} (2.20)

The decision rule to be employed here still is (2.18), but it is now based on t∗ defined in (2.20).
Note that test statistic (2.20) simplifies to test statistic (2.17) when the test involves H0: β1 =

β10 = 0.

2.2 Inferences Concerning β0

As noted in Chapter 1, there are only infrequent occasions when we wish to make inferences
concerning β0, the intercept of the regression line. These occur when the scope of the model
includes X = 0.

Sampling Distribution of b0

The point estimator b0 was given in (1.10b) as follows:

b0 = Ȳ − b1 X̄ (2.21)

The sampling distribution of b0 refers to the different values of b0 that would be obtained
with repeated sampling when the levels of the predictor variable X are held constant from
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sample to sample.

For regression model (2.1), the sampling distribution of b0

is normal, with mean and variance:
(2.22)

E{b0} = β0 (2.22a)

σ 2{b0} = σ 2

[
1

n
+ X̄ 2

∑
(Xi − X̄)2

]

(2.22b)

The normality of the sampling distribution of b0 follows because b0, like b1, is a linear
combination of the observations Yi . The results for the mean and variance of the sampling
distribution of b0 can be obtained in similar fashion as those for b1.

An estimator of σ 2{b0} is obtained by replacing σ 2 by its point estimator MSE:

s2{b0} = MSE

[
1

n
+ X̄ 2

∑
(Xi − X̄)2

]

(2.23)

The positive square root, s{b0}, is an estimator of σ {b0}.

Sampling Distribution of (b0 − β 0)/s{b0}
Analogous to theorem (2.10) for b1, a theorem for b0 states:

b0 − β0

s{b0} is distributed as t (n − 2) for regression model (2.1) (2.24)

Hence, confidence intervals for β0 and tests concerning β0 can be set up in ordinary fashion,
using the t distribution.

Confidence Interval for β0

The 1 − α confidence limits for β0 are obtained in the same manner as those for β1 derived
earlier. They are:

b0 ± t (1 − α/2; n − 2)s{b0} (2.25)

Example As noted earlier, the scope of the model for the Toluca Company example does not extend to
lot sizes of X = 0. Hence, the regression parameter β0 may not have intrinsic meaning here.
If, nevertheless, a 90 percent confidence interval for β0 were desired, we would proceed by
finding t (.95; 23) and s{b0}. From Table B.2, we find t (.95; 23) = 1.714. Using the earlier
results summarized in Table 2.1, we obtain by (2.23):

s2{b0} = MSE

[
1

n
+ X̄ 2

∑
(Xi − X̄)2

]

= 2,384

[
1

25
+ (70.00)2

19,800

]

= 685.34

or:

s{b0} = 26.18

The MINITAB output in Figure 2.2 shows this estimated standard deviation in the column
labeled Stdev and the row labeled Constant.

The 90 percent confidence interval for β0 is:

62.37 − 1.714(26.18) ≤ β0 ≤ 62.37 + 1.714(26.18)

17.5 ≤ β0 ≤ 107.2
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We caution again that this confidence interval does not necessarily provide meaningful
information. For instance, it does not necessarily provide information about the “setup”
cost (the cost incurred in setting up the production process for the part) since we are not
certain whether a linear regression model is appropriate when the scope of the model is
extended to X = 0.

2.3 Some Considerations on Making Inferences Concerning
β0 and β1

Effects of Departures from Normality
If the probability distributions of Y are not exactly normal but do not depart seriously,
the sampling distributions of b0 and b1 will be approximately normal, and the use of the
t distribution will provide approximately the specified confidence coefficient or level of
significance. Even if the distributions of Y are far from normal, the estimators b0 and b1

generally have the property of asymptotic normality—their distributions approach normality
under very general conditions as the sample size increases. Thus, with sufficiently large
samples, the confidence intervals and decision rules given earlier still apply even if the
probability distributions of Y depart far from normality. For large samples, the t value is,
of course, replaced by the z value for the standard normal distribution.

Interpretation of Confidence Coefficient and Risks of Errors
Since regression model (2.1) assumes that the Xi are known constants, the confidence
coefficient and risks of errors are interpreted with respect to taking repeated samples in
which the X observations are kept at the same levels as in the observed sample. For instance,
we constructed a confidence interval for β1 with confidence coefficient .95 in the Toluca
Company example. This coefficient is interpreted to mean that if many independent samples
are taken where the levels of X (the lot sizes) are the same as in the data set and a 95 percent
confidence interval is constructed for each sample, 95 percent of the intervals will contain
the true value of β1.

Spacing of the X Levels
Inspection of formulas (2.3b) and (2.22b) for the variances of b1 and b0, respectively,
indicates that for given n and σ 2 these variances are affected by the spacing of the X
levels in the observed data. For example, the greater is the spread in the X levels, the larger
is the quantity

∑
(Xi − X̄)2 and the smaller is the variance of b1. We discuss in Chapter 4

how the X observations should be spaced in experiments where spacing can be controlled.

Power of Tests
The power of tests on β0 and β1 can be obtained from Appendix Table B.5. Consider, for
example, the general test concerning β1 in (2.19):

H0: β1 = β10

Ha: β1 �= β10
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for which test statistic (2.20) is employed:

t∗ = b1 − β10

s{b1}
and the decision rule for level of significance α is given in (2.18):

If |t∗| ≤ t (1 − α/2; n − 2), conclude H0

If |t∗| > t (1 − α/2; n − 2), conclude Ha

The power of this test is the probability that the decision rule will lead to conclusion Ha

when Ha in fact holds. Specifically, the power is given by:

Power = P{|t∗| > t (1 − α/2; n − 2) | δ} (2.26)

where δ is the noncentrality measure—i.e., a measure of how far the true value of β1 is from
β10:

δ = |β1 − β10|
σ {b1} (2.27)

Table B.5 presents the power of the two-sided t test for α = .05 and α = .01, for various
degrees of freedom df . To illustrate the use of this table, let us return to the Toluca Company
example where we tested:

H0: β1 = β10 = 0

Ha: β1 �= β10 = 0

Suppose we wish to know the power of the test when β1 = 1.5. To ascertain this, we need
to know σ 2, the variance of the error terms. Assume, based on prior information or pilot
data, that a reasonable planning value for the unknown variance is σ 2 = 2,500, so σ 2{b1}
for our example would be:

σ 2{b1} = σ 2

∑
(Xi − X̄)2

= 2,500

19,800
= .1263

or σ {b1} = .3553. Then δ = |1.5 − 0|÷ .3553 = 4.22. We enter Table B.5 for α = .05 (the
level of significance used in the test) and 23 degrees of freedom and interpolate linearly
between δ = 4.00 and δ = 5.00. We obtain:

.97 + 4.22 − 4.00

5.00 − 4.00
(1.00 − .97) = .9766

Thus, if β1 = 1.5, the probability would be about .98 that we would be led to conclude
Ha (β1 �= 0). In other words, if β1 = 1.5, we would be almost certain to conclude that there
is a linear relation between work hours and lot size.

The power of tests concerning β0 can be obtained from Table B.5 in completely analogous
fashion. For one-sided tests, Table B.5 should be entered so that one-half the level of
significance shown there is the level of significance of the one-sided test.
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2.4 Interval Estimation of E{Yh}
A common objective in regression analysis is to estimate the mean for one or more prob-
ability distributions of Y . Consider, for example, a study of the relation between level of
piecework pay (X) and worker productivity (Y ). The mean productivity at high and medium
levels of piecework pay may be of particular interest for purposes of analyzing the bene-
fits obtained from an increase in the pay. As another example, the Toluca Company was
interested in the mean response (mean number of work hours) for a range of lot sizes for
purposes of finding the optimum lot size.

Let Xh denote the level of X for which we wish to estimate the mean response. Xh may
be a value which occurred in the sample, or it may be some other value of the predictor
variable within the scope of the model. The mean response when X = Xh is denoted by
E{Yh}. Formula (1.12) gives us the point estimator Ŷh of E{Yh}:

Ŷh = b0 + b1 Xh (2.28)

We consider now the sampling distribution of Ŷh .

Sampling Distribution of Ŷh

The sampling distribution of Ŷh , like the earlier sampling distributions discussed, refers to
the different values of Ŷh that would be obtained if repeated samples were selected, each
holding the levels of the predictor variable X constant, and calculating Ŷh for each sample.

For normal error regression model (2.1), the sampling distribution of
Ŷh is normal, with mean and variance:

(2.29)

E{Ŷh} = E{Yh} (2.29a)

σ 2{Ŷh} = σ 2

[
1

n
+ (Xh − X̄)2

∑
(Xi − X̄)2

]

(2.29b)

Normality. The normality of the sampling distribution of Ŷh follows directly from the
fact that Ŷh , like b0 and b1, is a linear combination of the observations Yi .

Mean. Note from (2.29a) that Ŷh is an unbiased estimator of E{Yh}. To prove this, we
proceed as follows:

E{Ŷh} = E{b0 + b1 Xh} = E{b0} + Xh E{b1} = β0 + β1 Xh

by (2.3a) and (2.22a).

Variance. Note from (2.29b) that the variability of the sampling distribution of Ŷh is
affected by how far Xh is from X̄ , through the term (Xh − X̄)2. The further from X̄ is
Xh , the greater is the quantity (Xh − X̄)2 and the larger is the variance of Ŷh . An intuitive
explanation of this effect is found in Figure 2.3. Shown there are two sample regression
lines, based on two samples for the same set of X values. The two regression lines are
assumed to go through the same (X̄ , Ȳ ) point to isolate the effect of interest, namely, the
effect of variation in the estimated slope b1 from sample to sample. Note that at X1, near
X̄ , the fitted values Ŷ1 for the two sample regression lines are close to each other. At X2,
which is far from X̄ , the situation is different. Here, the fitted values Ŷ2 differ substantially.
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FIGURE 2.3
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Thus, variation in the slope b1 from sample to sample has a much more pronounced effect
on Ŷh for X levels far from the mean X̄ than for X levels near X̄ . Hence, the variation in the
Ŷh values from sample to sample will be greater when Xh is far from the mean than when
Xh is near the mean.

When MSE is substituted for σ 2 in (2.29b), we obtain s2{Ŷh}, the estimated variance
of Ŷh :

s2{Ŷh} = MSE

[
1

n
+ (Xh − X̄)2

∑
(Xi − X̄)2

]

(2.30)

The estimated standard deviation of Ŷh is then s{Ŷh}, the positive square root of s2{Ŷh}.

Comments
1. When Xh = 0, the variance of Ŷh in (2.29b) reduces to the variance of b0 in (2.22b). Similarly,

s2{Ŷh} in (2.30) reduces to s2{b0} in (2.23). The reason is that Ŷh = b0 when Xh = 0 since Ŷh =
b0 + b1 Xh .

2. To derive σ 2{Ŷh}, we first show that b1 and Ȳ are uncorrelated and, hence, for regression model
(2.1), independent:

σ {Ȳ , b1} = 0 (2.31)

where σ {Ȳ , b1} denotes the covariance between Ȳ and b1. We begin with the definitions:

Ȳ =
∑(

1

n

)

Yi b1 =
∑

ki Yi

where ki is as defined in (2.4a). We now use (A.32), with ai = 1/n and ci = ki ; remember that the
Yi are independent random variables:

σ {Ȳ , b1} =
∑(

1

n

)

kiσ
2{Yi } = σ 2

n

∑
ki

But we know from (2.5) that
∑

ki = 0. Hence, the covariance is 0.
Now we are ready to find the variance of Ŷh . We shall use the estimator in the alternative form (1.15):

σ 2{Ŷh} = σ 2{Ȳ + b1(Xh − X̄)}
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Since Ȳ and b1 are independent and Xh and X̄ are constants, we obtain:

σ 2{Ŷh} = σ 2{Ȳ } + (Xh − X̄)2σ 2{b1}
Now σ 2{b1} is given in (2.3b), and:

σ 2{Ȳ } = σ 2{Yi }
n

= σ 2

n
Hence:

σ 2{Ŷh} = σ 2

n
+ (Xh − X̄)2 σ 2

∑
(Xi − X̄)2

which, upon a slight rearrangement of terms, yields (2.29b).

Sampling Distribution of (Ŷ h − E{Yh})/s{Ŷ h}
Since we have encountered the t distribution in each type of inference for regression
model (2.1) up to this point, it should not be surprising that:

Ŷh − E{Yh}
s{Ŷh}

is distributed as t (n − 2) for regression model (2.1) (2.32)

Hence, all inferences concerning E{Yh} are carried out in the usual fashion with the t
distribution. We illustrate the construction of confidence intervals, since in practice these
are used more frequently than tests.

Confidence Interval for E{Yh}
A confidence interval for E{Yh} is constructed in the standard fashion, making use of the t
distribution as indicated by theorem (2.32). The 1 − α confidence limits are:

Ŷh ± t (1 − α/2; n − 2)s{Ŷh} (2.33)

Example 1 Returning to the Toluca Company example, let us find a 90 percent confidence interval for
E{Yh} when the lot size is Xh = 65 units. Using the earlier results in Table 2.1, we find the
point estimate Ŷh :

Ŷh = 62.37 + 3.5702(65) = 294.4

Next, we need to find the estimated standard deviation s{Ŷh}. We obtain, using (2.30):

s2{Ŷh} = 2,384

[
1

25
+ (65 − 70.00)2

19,800

]

= 98.37

s{Ŷh} = 9.918

For a 90 percent confidence coefficient, we require t (.95; 23) = 1.714. Hence, our confi-
dence interval with confidence coefficient .90 is by (2.33):

294.4 − 1.714(9.918) ≤ E{Yh} ≤ 294.4 + 1.714(9.918)

277.4 ≤ E{Yh} ≤ 311.4

We conclude with confidence coefficient .90 that the mean number of work hours required
when lots of 65 units are produced is somewhere between 277.4 and 311.4 hours. We see
that our estimate of the mean number of work hours is moderately precise.
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Example 2 Suppose the Toluca Company wishes to estimate E{Yh} for lots with Xh = 100 units with
a 90 percent confidence interval. We require:

Ŷh = 62.37 + 3.5702(100) = 419.4

s2{Ŷh} = 2,384

[
1

25
+ (100 − 70.00)2

19,800

]

= 203.72

s{Ŷh} = 14.27

t (.95; 23) = 1.714

Hence, the 90 percent confidence interval is:

419.4 − 1.714(14.27) ≤ E{Yh} ≤ 419.4 + 1.714(14.27)

394.9 ≤ E{Yh} ≤ 443.9

Note that this confidence interval is somewhat wider than that for Example 1, since the
Xh level here (Xh = 100) is substantially farther from the mean X̄ = 70.0 than the Xh

level for Example 1 (Xh = 65).

Comments
1. Since the Xi are known constants in regression model (2.1), the interpretation of confidence

intervals and risks of errors in inferences on the mean response is in terms of taking repeated
samples in which the X observations are at the same levels as in the actual study. We noted this
same point in connection with inferences on β0 and β1.

2. We see from formula (2.29b) that, for given sample results, the variance of Ŷh is smallest when
Xh = X̄ . Thus, in an experiment to estimate the mean response at a particular level Xh of the
predictor variable, the precision of the estimate will be greatest if (everything else remaining equal)
the observations on X are spaced so that X̄ = Xh .

3. The usual relationship between confidence intervals and tests applies in inferences concerning the
mean response. Thus, the two-sided confidence limits (2.33) can be utilized for two-sided tests
concerning the mean response at Xh . Alternatively, a regular decision rule can be set up.

4. The confidence limits (2.33) for a mean response E{Yh} are not sensitive to moderate departures
from the assumption that the error terms are normally distributed. Indeed, the limits are not sensitive
to substantial departures from normality if the sample size is large. This robustness in estimating
the mean response is related to the robustness of the confidence limits for β0 and β1, noted earlier.

5. Confidence limits (2.33) apply when a single mean response is to be estimated from the study. We
discuss in Chapter 4 how to proceed when several mean responses are to be estimated from the
same data.

2.5 Prediction of New Observation
We consider now the prediction of a new observation Y corresponding to a given level X of
the predictor variable. Three illustrations where prediction of a new observation is needed
follow.

1. In the Toluca Company example, the next lot to be produced consists of 100 units and
management wishes to predict the number of work hours for this particular lot.
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2. An economist has estimated the regression relation between company sales and number
of persons 16 or more years old from data for the past 10 years. Using a reliable de-
mographic projection of the number of persons 16 or more years old for next year, the
economist wishes to predict next year’s company sales.

3. An admissions officer at a university has estimated the regression relation between
the high school grade point average (GPA) of admitted students and the first-year college
GPA. The officer wishes to predict the first-year college GPA for an applicant whose
high school GPA is 3.5 as part of the information on which an admissions decision will
be based.

The new observation on Y to be predicted is viewed as the result of a new trial, inde-
pendent of the trials on which the regression analysis is based. We denote the level of X
for the new trial as Xh and the new observation on Y as Yh(new). Of course, we assume
that the underlying regression model applicable for the basic sample data continues to be
appropriate for the new observation.

The distinction between estimation of the mean response E{Yh}, discussed in the pre-
ceding section, and prediction of a new response Yh(new), discussed now, is basic. In the
former case, we estimate the mean of the distribution of Y . In the present case, we predict
an individual outcome drawn from the distribution of Y . Of course, the great majority of
individual outcomes deviate from the mean response, and this must be taken into account
by the procedure for predicting Yh(new).

Prediction Interval for yh(new) when Parameters Known
To illustrate the nature of a prediction interval for a new observation Yh(new) in as simple a
fashion as possible, we shall first assume that all regression parameters are known. Later
we drop this assumption and make appropriate modifications.

Suppose that in the college admissions example the relevant parameters of the regression
model are known to be:

β0 = .10 β1 = .95

E{Y } = .10 + .95X

σ = .12

The admissions officer is considering an applicant whose high school GPA is Xh = 3.5.
The mean college GPA for students whose high school average is 3.5 is:

E{Yh} = .10 + .95(3.5) = 3.425

Figure 2.4 shows the probability distribution of Y for Xh = 3.5. Its mean is E{Yh} = 3.425,
and its standard deviation is σ = .12. Further, the distribution is normal in accord with
regression model (2.1).

Suppose we were to predict that the college GPA of the applicant whose high school
GPA is Xh = 3.5 will be between:

E{Yh} ± 3σ

3.425 ± 3(.12)

so that the prediction interval would be:

3.065 ≤ Yh(new) ≤ 3.785
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FIGURE 2.4
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Since 99.7 percent of the area in a normal probability distribution falls within three standard
deviations from the mean, the probability is .997 that this prediction interval will give a
correct prediction for the applicant with high school GPA of 3.5. While the prediction limits
here are rather wide, so that the prediction is not too precise, the prediction interval does
indicate to the admissions officer that the applicant is expected to attain at least a 3.0 GPA
in the first year of college.

The basic idea of a prediction interval is thus to choose a range in the distribution of Y
wherein most of the observations will fall, and then to declare that the next observation will
fall in this range. The usefulness of the prediction interval depends, as always, on the width
of the interval and the needs for precision by the user.

In general, when the regression parameters of normal error regression model (2.1) are
known, the 1 − α prediction limits for Yh(new) are:

E{Yh} ± z(1 − α/2)σ (2.34)

In centering the limits around E{Yh}, we obtain the narrowest interval consistent with the
specified probability of a correct prediction.

Prediction Interval for Yh(new) when Parameters Unknown
When the regression parameters are unknown, they must be estimated. The mean of the
distribution of Y is estimated by Ŷh , as usual, and the variance of the distribution of Y
is estimated by MSE. We cannot, however, simply use the prediction limits (2.34) with
the parameters replaced by the corresponding point estimators. The reason is illustrated
intuitively in Figure 2.5. Shown there are two probability distributions of Y , corresponding to
the upper and lower limits of a confidence interval for E{Yh}. In other words, the distribution
of Y could be located as far left as the one shown, as far right as the other one shown, or
anywhere in between. Since we do not know the mean E{Yh} and only estimate it by a
confidence interval, we cannot be certain of the location of the distribution of Y .

Figure 2.5 also shows the prediction limits for each of the two probability distribu-
tions of Y presented there. Since we cannot be certain of the location of the distribution
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FIGURE 2.5
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of Y , prediction limits for Yh(new) clearly must take account of two elements, as shown in
Figure 2.5:

1. Variation in possible location of the distribution of Y .
2. Variation within the probability distribution of Y .

Prediction limits for a new observation Yh(new) at a given level Xh are obtained by means
of the following theorem:

Yh(new) − Ŷh

s{pred} is distributed as t (n − 2) for normal error regression model (2.1) (2.35)

Note that the studentized statistic (2.35) uses the point estimator Ŷh in the numerator rather
than the true mean E{Yh} because the true mean is unknown and cannot be used in making a
prediction. The estimated standard deviation of the prediction, s{pred}, in the denominator
of the studentized statistic will be defined shortly.

From theorem (2.35), it follows in the usual fashion that the 1 − α prediction limits for
a new observation Yh(new) are (for instance, compare (2.35) to (2.10) and relate Ŷh to b1 and
Yh(new) to β1):

Ŷh ± t (1 − α/2; n − 2)s{pred} (2.36)

Note that the numerator of the studentized statistic (2.35) represents how far the new
observation Yh(new) will deviate from the estimated mean Ŷh based on the original n cases in
the study. This difference may be viewed as the prediction error, with Ŷh serving as the best
point estimate of the value of the new observation Yh(new). The variance of this prediction
error can be readily obtained by utilizing the independence of the new observation Yh(new) and
the original n sample cases on which Ŷh is based. We denote the variance of the prediction
error by σ 2{pred}, and we obtain by (A.31b):

σ 2{pred} = σ 2{Yh(new) − Ŷh} = σ 2{Yh(new)} + σ 2{Ŷh} = σ 2 + σ 2{Ŷh} (2.37)

Note that σ 2{pred} has two components:

1. The variance of the distribution of Y at X = Xh , namely σ 2.
2. The variance of the sampling distribution of Ŷh , namely σ 2{Ŷh}.
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An unbiased estimator of σ 2{pred} is:

s2{pred} = MSE + s2{Ŷh} (2.38)

which can be expressed as follows, using (2.30):

s2{pred} = MSE

[

1 + 1

n
+ (Xh − X̄)2

∑
(Xi − X̄)2

]

(2.38a)

Example The Toluca Company studied the relationship between lot size and work hours primarily
to obtain information on the mean work hours required for different lot sizes for use in
determining the optimum lot size. The company was also interested, however, to see whether
the regression relationship is useful for predicting the required work hours for individual
lots. Suppose that the next lot to be produced consists of Xh = 100 units and that a 90 percent
prediction interval is desired. We require t (.95; 23) = 1.714. From earlier work, we have:

Ŷh = 419.4 s2{Ŷh} = 203.72 MSE = 2,384

Using (2.38), we obtain:

s2{pred} = 2,384 + 203.72 = 2,587.72

s{pred} = 50.87

Hence, the 90 percent prediction interval for Yh(new) is by (2.36):

419.4 − 1.714(50.87) ≤ Yh(new) ≤ 419.4 + 1.714(50.87)

332.2 ≤ Yh(new) ≤ 506.6

With confidence coefficient .90, we predict that the number of work hours for the next
production run of 100 units will be somewhere between 332 and 507 hours.

This prediction interval is rather wide and may not be too useful for planning worker
requirements for the next lot. The interval can still be useful for control purposes, though.
For instance, suppose that the actual work hours on the next lot of 100 units were 550 hours.
Since the actual work hours fall outside the prediction limits, management would have an
indication that a change in the production process may have occurred and would be alerted
to the possible need for remedial action.

Note that the primary reason for the wide prediction interval is the large lot-to-lot vari-
ability in work hours for any given lot size; MSE = 2,384 accounts for 92 percent of
the estimated prediction variance s2{pred} = 2,587.72. It may be that the large lot-to-lot
variability reflects other factors that affect the required number of work hours besides lot
size, such as the amount of experience of employees assigned to the lot production. If so, a
multiple regression model incorporating these other factors might lead to much more pre-
cise predictions. Alternatively, a designed experiment could be conducted to determine the
main factors leading to the large lot-to-lot variation. A quality improvement program would
then use these findings to achieve more uniform performance, for example, by additional
training of employees if inadequate training accounted for much of the variability.
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Comments
1. The 90 percent prediction interval for Yh(new) obtained in the Toluca Company example is wider

than the 90 percent confidence interval for E{Yh} obtained in Example 2 on page 55. The reason is
that when predicting the work hours required for a new lot, we encounter both the variability in Ŷh

from sample to sample as well as the lot-to-lot variation within the probability distribution of Y .

2. Formula (2.38a) indicates that the prediction interval is wider the further Xh is from X̄ . The
reason for this is that the estimate of the mean Ŷh , as noted earlier, is less precise as Xh is located
farther away from X̄ .

3. The prediction limits (2.36), unlike the confidence limits (2.33) for a mean response E{Yh},
are sensitive to departures from normality of the error terms distribution. In Chapter 3, we discuss
diagnostic procedures for examining the nature of the probability distribution of the error terms, and
we describe remedial measures if the departure from normality is serious.

4. The confidence coefficient for the prediction limits (2.36) refers to the taking of repeated
samples based on the same set of X values, and calculating prediction limits for Yh(new) for each
sample.

5. Prediction limits (2.36) apply for a single prediction based on the sample data. Next, we discuss
how to predict the mean of several new observations at a given Xh , and in Chapter 4 we take up how
to make several predictions at different Xh levels.

6. Prediction intervals resemble confidence intervals. However, they differ conceptually. A confi-
dence interval represents an inference on a parameter and is an interval that is intended to cover the
value of the parameter. A prediction interval, on the other hand, is a statement about the value to be
taken by a random variable, the new observation Yh(new).

Prediction of Mean of m New Observations for Given Xh

Occasionally, one would like to predict the mean of m new observations on Y for a given
level of the predictor variable. Suppose the Toluca Company has been asked to bid on a
contract that calls for m = 3 production runs of Xh = 100 units during the next few months.
Management would like to predict the mean work hours per lot for these three runs and
then convert this into a prediction of the total work hours required to fill the contract.

We denote the mean of the new Y observations to be predicted as Ȳ h(new). It can be shown
that the appropriate 1 − α prediction limits are, assuming that the new Y observations are
independent:

Ŷh ± t (1 − α/2; n − 2)s{predmean} (2.39)

where:

s2{predmean} = MSE

m
+ s2{Ŷh} (2.39a)

or equivalently:

s2{predmean} = MSE

[
1

m
+ 1

n
+ (Xh − X̄)2

∑
(Xi − X̄)2

]

(2.39b)

Note from (2.39a) that the variance s2{predmean} has two components:

1. The variance of the mean of m observations from the probability distribution of Y at
X = Xh .

2. The variance of the sampling distribution of Ŷh .
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Example In the Toluca Company example, let us find the 90 percent prediction interval for the mean
number of work hours Ȳ h(new) in three new production runs, each for Xh = 100 units. From
previous work, we have:

Ŷh = 419.4 s2{Ŷh} = 203.72

MSE = 2,384 t (.95; 23) = 1.714

Hence, we obtain:

s2{predmean} = 2,384

3
+ 203.72 = 998.4

s{predmean} = 31.60

The prediction interval for the mean work hours per lot then is:

419.4 − 1.714(31.60) ≤ Ȳh(new) ≤ 419.4 + 1.714(31.60)

365.2 ≤ Ȳh(new) ≤ 473.6

Note that these prediction limits are narrower than those for predicting the work hours
for a single lot of 100 units because they involve a prediction of the mean work hours for
three lots.

We obtain the prediction interval for the total number of work hours for the three lots by
multiplying the prediction limits for Ȳh(new) by 3:

1,095.6 = 3(365.2) ≤ Total work hours ≤ 3(473.6) = 1,420.8

Thus, it can be predicted with 90 percent confidence that between 1,096 and 1,421 work
hours will be needed to fill the contract for three lots of 100 units each.

Comment
The 90 percent prediction interval for Ȳh(new), obtained for the Toluca Company example above, is
narrower than that obtained for Yh(new) on page 59, as expected. Furthermore, both of the prediction in-
tervals are wider than the 90 percent confidence interval for E{Yh} obtained in Example 2 on page 55—
also as expected.

2.6 Confidence Band for Regression Line
At times we would like to obtain a confidence band for the entire regression line E{Y } =
β0 + β1 X . This band enables us to see the region in which the entire regression line lies. It
is particularly useful for determining the appropriateness of a fitted regression function, as
we explain in Chapter 3.

The Working-Hotelling 1 − α confidence band for the regression line for regression
model (2.1) has the following two boundary values at any level Xh :

Ŷh ± W s{Ŷh} (2.40)

where:

W 2 = 2F(1 − α; 2, n − 2) (2.40a)

and Ŷh and s{Ŷh} are defined in (2.28) and (2.30), respectively. Note that the formula
for the boundary values is of exactly the same form as formula (2.33) for the confidence
limits for the mean response at Xh , except that the t multiple has been replaced by the W
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multiple. Consequently, the boundary points of the confidence band for the regression line
are wider apart the further Xh is from the mean X̄ of the X observations. The W multiple
will be larger than the t multiple in (2.33) because the confidence band must encompass
the entire regression line, whereas the confidence limits for E{Yh} at Xh apply only at the
single level Xh .

Example We wish to determine how precisely we have been able to estimate the regression function
for the Toluca Company example by obtaining the 90 percent confidence band for the
regression line. We illustrate the calculations of the boundary values of the confidence band
when Xh = 100. We found earlier for this case:

Ŷh = 419.4 s{Ŷh} = 14.27

We now require:

W 2 = 2F(1 − α; 2, n − 2) = 2F(.90; 2, 23) = 2(2.549) = 5.098

W = 2.258

Hence, the boundary values of the confidence band for the regression line at Xh = 100 are
419.4 ± 2.258(14.27), and the confidence band there is:

387.2 ≤ β0 + β1 Xh ≤ 451.6 for Xh = 100

In similar fashion, we can calculate the boundary values for other values of Xh by
obtaining Ŷh and s{Ŷh} for each Xh level from (2.28) and (2.30) and then finding the
boundary values by means of (2.40). Figure 2.6 contains a plot of the confidence band for
the regression line. Note that at Xh = 100, the boundary values are 387.2 and 451.6, as we
calculated earlier.

We see from Figure 2.6 that the regression line for the Toluca Company example has
been estimated fairly precisely. The slope of the regression line is clearly positive, and the
levels of the regression line at different levels of X are estimated fairly precisely except for
small and large lot sizes.

FIGURE 2.6
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Comments
1. The boundary values of the confidence band for the regression line in (2.40) define a hyperbola,

as may be seen by replacing Ŷh and s{Ŷh} by their definitions in (2.28) and (2.30), respectively:

b0 + b1 X ± W
√

MSE

[
1

n
+ (X − X̄)2

∑
(Xi − X̄)2

]1/2

(2.41)

2. The boundary values of the confidence band for the regression line at any value Xh often are
not substantially wider than the confidence limits for the mean response at that single Xh level. In
the Toluca Company example, the t multiple for estimating the mean response at Xh = 100 with a
90 percent confidence interval was t (.95; 23) = 1.714. This compares with the W multiple for the
90 percent confidence band for the entire regression line of W = 2.258. With the somewhat wider
limits for the entire regression line, one is able to draw conclusions about any and all mean responses
for the entire regression line and not just about the mean response at a given X level. Some uses of
this broader base for inference will be explained in the next two chapters.

3. The confidence band (2.40) applies to the entire regression line over all real-numbered values
of X from −∞ to ∞. The confidence coefficient indicates the proportion of time that the estimating
procedure will yield a band that covers the entire line, in a long series of samples in which the X
observations are kept at the same level as in the actual study.

In applications, the confidence band is ignored for that part of the regression line which is not
of interest in the problem at hand. In the Toluca Company example, for instance, negative lot sizes
would be ignored. The confidence coefficient for a limited segment of the band of interest is somewhat
higher than 1 − α, so 1 − α serves then as a lower bound to the confidence coefficient.

4. Some alternative procedures for developing confidence bands for the regression line have been
developed. The simplicity of the Working-Hotelling confidence band (2.40) arises from the fact that
it is a direct extension of the confidence limits for a single mean response in (2.33).

2.7 Analysis of Variance Approach to Regression Analysis
We now have developed the basic regression model and demonstrated its major uses. At
this point, we consider the regression analysis from the perspective of analysis of variance.
This new perspective will not enable us to do anything new, but the analysis of variance
approach will come into its own when we take up multiple regression models and other
types of linear statistical models.

Partitioning of Total Sum of Squares
Basic Notions. The analysis of variance approach is based on the partitioning of sums
of squares and degrees of freedom associated with the response variable Y . To explain the
motivation of this approach, consider again the Toluca Company example. Figure 2.7a shows
the observations Yi for the first two production runs presented in Table 1.1. Disregarding
the lot sizes, we see that there is variation in the number of work hours Yi , as in all statistical
data. This variation is conventionally measured in terms of the deviations of the Yi around
their mean Ȳ :

Yi − Ȳ (2.42)
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FIGURE 2.7 Illustration of Partitioning of Total Deviations Y i − Ȳ—Toluca Company Example (not drawn to
scale; only observations Y 1 and Y 2 are shown).
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Ŷ1

Y

Lot Size

Ŷ1
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Ŷ2
Y2

Y
Y Y

300 0 080 X X30 3080 80
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These deviations are shown by the vertical lines in Figure 2.7a. The measure of total
variation, denoted by SSTO, is the sum of the squared deviations (2.42):

SSTO =
∑

(Yi − Ȳ )2 (2.43)

Here SSTO stands for total sum of squares. If all Yi observations are the same, SSTO = 0.
The greater the variation among the Yi observations, the larger is SSTO. Thus, SSTO for
our example is a measure of the uncertainty pertaining to the work hours required for a lot,
when the lot size is not taken into account.

When we utilize the predictor variable X , the variation reflecting the uncertainty con-
cerning the variable Y is that of the Yi observations around the fitted regression line:

Yi − Ŷi (2.44)

These deviations are shown by the vertical lines in Figure 2.7b. The measure of variation
in the Yi observations that is present when the predictor variable X is taken into account is
the sum of the squared deviations (2.44), which is the familiar SSE of (1.21):

SSE =
∑

(Yi − Ŷi )
2 (2.45)

Again, SSE denotes error sum of squares. If all Yi observations fall on the fitted regression
line, SSE = 0. The greater the variation of the Yi observations around the fitted regression
line, the larger is SSE.

For the Toluca Company example, we know from earlier work (Table 2.1) that:

SSTO = 307,203 SSE = 54,825

What accounts for the substantial difference between these two sums of squares? The
difference, as we show shortly, is another sum of squares:

SSR =
∑

(Ŷi − Ȳ )2 (2.46)
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where SSR stands for regression sum of squares. Note that SSR is a sum of squared deviations,
the deviations being:

Ŷi − Ȳ (2.47)

These deviations are shown by the vertical lines in Figure 2.7c. Each deviation is simply the
difference between the fitted value on the regression line and the mean of the fitted values
Ȳ . (Recall from (1.18) that the mean of the fitted values Ŷi is Ȳ .) If the regression line is
horizontal so that Ŷi − Ȳ ≡ 0, then SSR = 0. Otherwise, SSR is positive.

SSR may be considered a measure of that part of the variability of the Yi which is
associated with the regression line. The larger SSR is in relation to SSTO, the greater is the
effect of the regression relation in accounting for the total variation in the Yi observations.

For the Toluca Company example, we have:

SSR = SSTO − SSE = 307,203 − 54,825 = 252,378

which indicates that most of the total variability in work hours is accounted for by the
relation between lot size and work hours.

Formal Development of Partitioning. The total deviation Yi − Ȳ , used in the measure of
the total variation of the observations Yi without taking the predictor variable into account,
can be decomposed into two components:

Yi − Ȳ
︸ ︷︷ ︸

= Ŷi − Ȳ
︸ ︷︷ ︸

+ Yi − Ŷi︸ ︷︷ ︸
(2.48)

Total Deviation Deviation
deviation of fitted around

regression fitted
value regression

around mean line

The two components are:

1. The deviation of the fitted value Ŷi around the mean Ȳ .
2. The deviation of the observation Yi around the fitted regression line.

Figure 2.7 shows this decomposition for observation Y1 by the broken lines.
It is a remarkable property that the sums of these squared deviations have the same

relationship:
∑

(Yi − Ȳ )2 =
∑

(Ŷi − Ȳ )2 +
∑

(Yi − Ŷi )
2 (2.49)

or, using the notation in (2.43), (2.45), and (2.46):

SSTO = SSR + SSE (2.50)

To prove this basic result in the analysis of variance, we proceed as follows:
∑

(Yi − Ȳ )2 =
∑

[(Ŷi − Ȳ ) + (Yi − Ŷi )]
2

=
∑

[(Ŷi − Ȳ )2 + (Yi − Ŷi )
2 + 2(Ŷi − Ȳ )(Yi − Ŷi )]

=
∑

(Ŷi − Ȳ )2 +
∑

(Yi − Ŷi )
2 + 2

∑
(Ŷi − Ȳ )(Yi − Ŷi )
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The last term on the right equals zero, as we can see by expanding it:

2
∑

(Ŷi − Ȳ )(Yi − Ŷi ) = 2
∑

Ŷi (Yi − Ŷi ) − 2Ȳ
∑

(Yi − Ŷi )

The first summation on the right equals zero by (1.20), and the second equals zero by (1.17).
Hence, (2.49) follows.

Comment
The formulas for SSTO, SSR, and SSE given in (2.43), (2.45), and (2.46) are best for computational
accuracy. Alternative formulas that are algebraically equivalent are available. One that is useful for
deriving analytical results is:

SSR = b2
1

∑
(Xi − X̄)2 (2.51)

Breakdown of Degrees of Freedom
Corresponding to the partitioning of the total sum of squares SSTO, there is a partitioning
of the associated degrees of freedom (abbreviated df ). We have n − 1 degrees of freedom
associated with SSTO. One degree of freedom is lost because the deviations Yi − Ȳ are
subject to one constraint: they must sum to zero. Equivalently, one degree of freedom is
lost because the sample mean Ȳ is used to estimate the population mean.

SSE, as noted earlier, has n − 2 degrees of freedom associated with it. Two degrees of
freedom are lost because the two parameters β0 and β1 are estimated in obtaining the fitted
values Ŷi .

SSR has one degree of freedom associated with it. Although there are n deviations Ŷi − Ȳ ,
all fitted values Ŷi are calculated from the same estimated regression line. Two degrees of
freedom are associated with a regression line, corresponding to the intercept and the slope
of the line. One of the two degrees of freedom is lost because the deviations Ŷi − Ȳ are
subject to a constraint: they must sum to zero.

Note that the degrees of freedom are additive:

n − 1 = 1 + (n − 2)

For the Toluca Company example, these degrees of freedom are:

24 = 1 + 23

Mean Squares
A sum of squares divided by its associated degrees of freedom is called a mean square
(abbreviated MS). For instance, an ordinary sample variance is a mean square since a sum
of squares,

∑
(Yi − Ȳ )2, is divided by its associated degrees of freedom, n − 1. We are

interested here in the regression mean square, denoted by MSR:

MSR = SSR

1
= SSR (2.52)

and in the error mean square, MSE, defined earlier in (1.22):

MSE = SSE

n − 2
(2.53)
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For the Toluca Company example, we have SSR = 252,378 and SSE = 54,825. Hence:

MSR = 252,378

1
= 252,378

Also, we obtained earlier:

MSE = 54,825

23
= 2,384

Comment
The two mean squares MSR and MSE do not add to

SSTO

(n − 1)
= 307,203

24
= 12,800

Thus, mean squares are not additive.

Analysis of Variance Table
Basic Table. The breakdowns of the total sum of squares and associated degrees of
freedom are displayed in the form of an analysis of variance table (ANOVA table) in
Table 2.2. Mean squares of interest also are shown. In addition, the ANOVA table contains
a column of expected mean squares that will be utilized shortly. The ANOVA table for the
Toluca Company example is shown in Figure 2.2. The columns for degrees of freedom and
sums of squares are reversed in the MINITAB output.

Modified Table. Sometimes an ANOVA table showing one additional element of decom-
position is utilized. This modified table is based on the fact that the total sum of squares
can be decomposed into two parts, as follows:

SSTO =
∑

(Yi − Ȳ )2 =
∑

Y 2
i − nȲ 2

In the modified ANOVA table, the total uncorrected sum of squares, denoted by SSTOU ,
is defined as:

SSTOU =
∑

Y 2
i (2.54)

and the correction for the mean sum of squares, denoted by SS(correction for mean), is
defined as:

SS(correction for mean) = nȲ 2 (2.55)

Table 2.3 shows the general format of this modified ANOVA table. While both types of
ANOVA tables are widely used, we shall usually utilize the basic type of table.

TABLE 2.2
ANOVA Table
for Simple
Linear
Regression.

Source of
Variation SS df MS E{MS}

Regression SSR = ∑
(Ŷi − Ȳ )2 1 MSR = SSR

1
σ 2 + β2

1

∑
(Xi − X̄ )2

Error SSE = ∑
(Yi − Ŷi )2 n − 2 MSE = SSE

n − 2
σ 2

Total SSTO = ∑
(Yi − Ȳ )2 n − 1
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TABLE 2.3
Modified
ANOVA Table
for Simple
Linear
Regression.

Source of
Variation SS df MS

Regression SSR = ∑
(Ŷi − Ȳ )2 1 MSR = SSR

1

Error SSE = ∑
(Yi − Ŷi )2 n − 2 MSE = SSE

n − 2
Total SSTO = ∑

(Yi − Ȳ )2 n − 1

Correction for mean SS(correction 1
for mean) = nȲ 2

Total, uncorrected SSTOU = ∑
Y 2

i n

Expected Mean Squares
In order to make inferences based on the analysis of variance approach, we need to know
the expected value of each of the mean squares. The expected value of a mean square is the
mean of its sampling distribution and tells us what is being estimated by the mean square.
Statistical theory provides the following results:

E{MSE} = σ 2 (2.56)

E{MSR} = σ 2 + β2
1

∑
(Xi − X̄)2 (2.57)

The expected mean squares in (2.56) and (2.57) are shown in the analysis of variance table
in Table 2.2. Note that result (2.56) is in accord with our earlier statement that MSE is an
unbiased estimator of σ 2.

Two important implications of the expected mean squares in (2.56) and (2.57) are the
following:

1. The mean of the sampling distribution of MSE is σ 2 whether or not X and Y are linearly
related, i.e., whether or not β1 = 0.

2. The mean of the sampling distribution of MSR is also σ 2 when β1 = 0. Hence, when
β1 = 0, the sampling distributions of MSR and MSE are located identically and MSR and
MSE will tend to be of the same order of magnitude.

On the other hand, when β1 �= 0, the mean of the sampling distribution of MSR is
greater than σ 2 since the term β2

1

∑
(Xi − X̄)2 in (2.57) then must be positive. Thus,

when β1 �= 0, the mean of the sampling distribution of MSR is located to the right of that
of MSE and, hence, MSR will tend to be larger than MSE.

This suggests that a comparison of MSR and MSE is useful for testing whether or not
β1 = 0. If MSR and MSE are of the same order of magnitude, this would suggest that β1 = 0.
On the other hand, if MSR is substantially greater than MSE, this would suggest that β1 �= 0.
This indeed is the basic idea underlying the analysis of variance test to be discussed next.

Comment
The derivation of (2.56) follows from theorem (2.11), which states that SSE/σ 2 ∼ χ2(n − 2)

for regression model (2.1). Hence, it follows from property (A.42) of the chi-square distribution
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that:

E
{SSE

σ 2

}
= n − 2

or that:

E
{ SSE

n − 2

}
= E{MSE} = σ 2

To find the expected value of MSR, we begin with (2.51):

SSR = b2
1

∑
(Xi − X̄)2

Now by (A.15a), we have:

σ 2{b1} = E
{

b2
1

} − (E{b1})2 (2.58)

We know from (2.3a) that E{b1} = β1 and from (2.3b) that:

σ 2{b1} = σ 2

∑
(Xi − X̄)2

Hence, substituting into (2.58), we obtain:

E
{

b2
1

} = σ 2

∑
(Xi − X̄)2

+ β2
1

It now follows that:

E{SSR} = E
{

b2
1

}∑
(Xi − X̄)2 = σ 2 + β2

1

∑
(Xi − X̄)2

Finally, E{MSR} is:

E{MSR} = E
{SSR

1

}
= σ 2 + β2

1

∑
(Xi − X̄)2

F Test of β1 = 0 versus β1 �= 0
The analysis of variance approach provides us with a battery of highly useful tests for
regression models (and other linear statistical models). For the simple linear regression
case considered here, the analysis of variance provides us with a test for:

H0: β1 = 0

Ha: β1 �= 0
(2.59)

Test Statistic. The test statistic for the analysis of variance approach is denoted by F∗.
As just mentioned, it compares MSR and MSE in the following fashion:

F∗ = MSR

MSE
(2.60)

The earlier motivation, based on the expected mean squares in Table 2.2, suggests that large
values of F∗ support Ha and values of F∗ near 1 support H0. In other words, the appropriate
test is an upper-tail one.

Sampling Distribution of F∗. In order to be able to construct a statistical decision rule
and examine its properties, we need to know the sampling distribution of F∗. We begin by
considering the sampling distribution of F∗ when H0 (β1 = 0) holds. Cochran’s theorem
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will be most helpful in this connection. For our purposes, this theorem can be stated as
follows:

If all n observations Yi come from the same normal distribution with
mean µ and variance σ 2, and SSTO is decomposed into k sums of
squares SSr , each with degrees of freedom dfr, then the SSr/σ

2 terms
are independent χ2 variables with dfr degrees of freedom if:

(2.61)

k∑

r=1

dfr = n − 1

Note from Table 2.2 that we have decomposed SSTO into the two sums of squares SSR
and SSE and that their degrees of freedom are additive. Hence:

If β1 = 0 so that all Yi have the same mean µ = β0 and the same
variance σ 2, SSE/σ 2 and SSR/σ 2 are independent χ2 variables.

Now consider test statistic F∗, which we can write as follows:

F∗ =
SSR

σ 2

1
÷

SSE

σ 2

n − 2
= MSR

MSE

But by Cochran’s theorem, we have when H0 holds:

F∗ ∼ χ2(1)

1
÷ χ2(n − 2)

n − 2
when H0 holds

where the χ2 variables are independent. Thus, when H0 holds, F∗ is the ratio of two
independent χ2 variables, each divided by its degrees of freedom. But this is the definition
of an F random variable in (A.47).

We have thus established that if H0 holds, F∗ follows the F distribution, specifically the
F(1, n − 2) distribution.

When Ha holds, it can be shown that F∗ follows the noncentral F distribution, a complex
distribution that we need not consider further at this time.

Comment
Even if β1 �= 0, SSR and SSE are independent and SSE/σ 2 ∼ χ2. However, the condition that both
SSR/σ 2 and SSE/σ 2 are χ2 random variables requires β1 = 0.

Construction of Decision Rule. Since the test is upper-tail and F∗ is distributed as
F (1, n − 2) when H0 holds, the decision rule is as follows when the risk of a Type I error
is to be controlled at α:

If F∗ ≤ F(1 − α; 1, n − 2), conclude H0

If F∗ > F(1 − α; 1, n − 2), conclude Ha
(2.62)

where F(1 − α; 1, n − 2) is the (1 − α)100 percentile of the appropriate F distribution.
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Example For the Toluca Company example, we shall repeat the earlier test on β1, this time using the
F test. The alternative conclusions are:

H0: β1 = 0

Ha: β1 �= 0

As before, let α = .05. Since n = 25, we require F(.95; 1, 23) = 4.28. The decision rule is:

If F∗ ≤ 4.28, conclude H0

If F∗ > 4.28, conclude Ha

We have from earlier that MSR = 252,378 and MSE = 2,384. Hence, F∗ is:

F∗ = 252,378

2,384
= 105.9

Since F∗ = 105.9 > 4.28, we conclude Ha , that β1 �= 0, or that there is a linear
association between work hours and lot size. This is the same result as when the t test was
employed, as it must be according to our discussion below.

The MINITAB output in Figure 2.2 on page 46 shows the F∗ statistic in the column
labeled F. Next to it is shown the P-value, P{F(1, 23) > 105.9}, namely, 0+, indicating
that the data are not consistent with β1 = 0.

Equivalence of F Test and t Test. For a given α level, the F test of β1 = 0 versus β1 �= 0
is equivalent algebraically to the two-tailed t test. To see this, recall from (2.51) that:

SSR = b2
1

∑
(Xi − X̄)2

Thus, we can write:

F∗ = SSR ÷ 1

SSE ÷ (n − 2)
= b2

1

∑
(Xi − X̄)2

MSE

But since s2{b1} = MSE/
∑

(Xi − X̄)2, we obtain:

F∗ = b2
1

s2{b1} =
(

b1

s{b1}
)2

= (t∗)2 (2.63)

The last step follows because the t∗ statistic for testing whether or not β1 = 0 is by (2.17):

t∗ = b1

s{b1}
In the Toluca Company example, we just calculated that F∗ = 105.9. From earlier work,

we have t∗ = 10.29 (see Figure 2.2). We thus see that (10.29)2 = 105.9.
Corresponding to the relation between t∗ and F∗, we have the following relation between

the required percentiles of the t and F distributions for the tests: [t (1 − α/2; n − 2)]2 =
F(1 − α; 1, n − 2). In our tests on β1, these percentiles were [t (.975; 23)]2 = (2.069)2 =
4.28 = F(.95; 1, 23). Remember that the t test is two-tailed whereas the F test is one-tailed.

Thus, at any given α level, we can use either the t test or the F test for testing β1 = 0
versus β1 �= 0. Whenever one test leads to H0, so will the other, and correspondingly for Ha .
The t test, however, is more flexible since it can be used for one-sided alternatives involving
β1(≤ ≥) 0 versus β1(> <) 0, while the F test cannot.
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2.8 General Linear Test Approach
The analysis of variance test of β1 = 0 versus β1 �= 0 is an example of the general test for
a linear statistical model. We now explain this general test approach in terms of the simple
linear regression model. We do so at this time because of the generality of the approach
and the wide use we shall make of it, and because of the simplicity of understanding the
approach in terms of simple linear regression.

The general linear test approach involves three basic steps, which we now describe in
turn.

Full Model
We begin with the model considered to be appropriate for the data, which in this context is
called the full or unrestricted model. For the simple linear regression case, the full model is
the normal error regression model (2.1):

Yi = β0 + β1 Xi + εi Full model (2.64)

We fit this full model, either by the method of least squares or by the method of maximum
likelihood, and obtain the error sum of squares. The error sum of squares is the sum of the
squared deviations of each observation Yi around its estimated expected value. In this
context, we shall denote this sum of squares by SSE(F) to indicate that it is the error sum
of squares for the full model. Here, we have:

SSE(F) =
∑

[Yi − (b0 + b1 Xi )]
2 =

∑
(Yi − Ŷi )

2 = SSE (2.65)

Thus, for the full model (2.64), the error sum of squares is simply SSE, which measures the
variability of the Yi observations around the fitted regression line.

Reduced Model
Next, we consider H0. In this instance, we have:

H0: β1 = 0

Ha: β1 �= 0
(2.66)

The model when H0 holds is called the reduced or restricted model. When β1 = 0,
model (2.64) reduces to:

Yi = β0 + εi Reduced model (2.67)

We fit this reduced model, by either the method of least squares or the method of
maximum likelihood, and obtain the error sum of squares for this reduced model, denoted
by SSE(R). When we fit the particular reduced model (2.67), it can be shown that the least
squares and maximum likelihood estimator of β0 is Ȳ . Hence, the estimated expected value
for each observation is b0 = Ȳ , and the error sum of squares for this reduced model is:

SSE(R) =
∑

(Yi − b0)
2 =

∑
(Yi − Ȳ )2 = SSTO (2.68)
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Test Statistic
The logic now is to compare the two error sums of squares SSE(F) and SSE(R). It can be
shown that SSE(F) never is greater than SSE(R):

SSE(F) ≤ SSE(R) (2.69)

The reason is that the more parameters are in the model, the better one can fit the data
and the smaller are the deviations around the fitted regression function. When SSE(F) is
not much less than SSE(R), using the full model does not account for much more of the
variability of the Yi than does the reduced model, in which case the data suggest that the
reduced model is adequate (i.e., that H0 holds). To put this another way, when SSE(F) is
close to SSE(R), the variation of the observations around the fitted regression function for
the full model is almost as great as the variation around the fitted regression function for
the reduced model. In this case, the added parameters in the full model really do not help to
reduce the variation in the Yi about the fitted regression function. Thus, a small difference
SSE(R)−SSE(F) suggests that H0 holds. On the other hand, a large difference suggests that
Ha holds because the additional parameters in the model do help to reduce substantially the
variation of the observations Yi around the fitted regression function.

The actual test statistic is a function of SSE(R) − SSE(F), namely:

F∗ = SSE(R) − SSE(F)

dfR − dfF
÷ SSE(F)

dfF
(2.70)

which follows the F distribution when H0 holds. The degrees of freedom dfR and dfF are
those associated with the reduced and full model error sums of squares, respectively. Large
values of F∗ lead to Ha because a large difference SSE(R)−SSE(F) suggests that Ha holds.
The decision rule therefore is:

If F∗ ≤ F(1 − α; dfR − dfF, dfF), conclude H0

If F∗ > F(1 − α; dfR − dfF, dfF), conclude Ha
(2.71)

For testing whether or not β1 = 0, we therefore have:

SSE(R) = SSTO SSE(F) = SSE

dfR = n − 1 dfF = n − 2

so that we obtain when substituting into (2.70):

F∗ = SSTO − SSE

(n − 1) − (n − 2)
÷ SSE

n − 2
= SSR

1
÷ SSE

n − 2
= MSR

MSE

which is identical to the analysis of variance test statistic (2.60).

Summary
The general linear test approach can be used for highly complex tests of linear statistical
models, as well as for simple tests. The basic steps in summary form are:

1. Fit the full model and obtain the error sum of squares SSE(F).
2. Fit the reduced model under H0 and obtain the error sum of squares SSE(R).
3. Use test statistic (2.70) and decision rule (2.71).
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2.9 Descriptive Measures of Linear Association between X and Y

We have discussed the major uses of regression analysis—estimation of parameters and
means and prediction of new observations—without mentioning the “degree of linear
association” between X and Y , or similar terms. The reason is that the usefulness of estimates
or predictions depends upon the width of the interval and the user’s needs for precision,
which vary from one application to another. Hence, no single descriptive measure of the
“degree of linear association” can capture the essential information as to whether a given
regression relation is useful in any particular application.

Nevertheless, there are times when the degree of linear association is of interest in its
own right. We shall now briefly discuss two descriptive measures that are frequently used
in practice to describe the degree of linear association between X and Y .

Coefficient of Determination
We saw earlier that SSTO measures the variation in the observations Yi , or the uncertainty in
predicting Y , when no account of the predictor variable X is taken. Thus, SSTO is a measure
of the uncertainty in predicting Y when X is not considered. Similarly, SSE measures the
variation in the Yi when a regression model utilizing the predictor variable X is employed.
A natural measure of the effect of X in reducing the variation in Y , i.e., in reducing the
uncertainty in predicting Y , is to express the reduction in variation (SSTO − SSE = SSR)

as a proportion of the total variation:

R2 = SSR

SSTO
= 1 − SSE

SSTO
(2.72)

The measure R2 is called the coefficient of determination. Since 0 ≤ SSE ≤ SSTO, it
follows that:

0 ≤ R2 ≤ 1 (2.72a)

We may interpret R2 as the proportionate reduction of total variation associated with
the use of the predictor variable X . Thus, the larger R2 is, the more the total variation of
Y is reduced by introducing the predictor variable X . The limiting values of R2 occur as
follows:

1. When all observations fall on the fitted regression line, then SSE = 0 and R2 = 1.
This case is shown in Figure 2.8a. Here, the predictor variable X accounts for all variation
in the observations Yi .

2. When the fitted regression line is horizontal so that b1 = 0 and Ŷi ≡ Ȳ , then SSE =
SSTO and R2 = 0. This case is shown in Figure 2.8b. Here, there is no linear association
between X and Y in the sample data, and the predictor variable X is of no help in reducing
the variation in the observations Yi with linear regression.

In practice, R2 is not likely to be 0 or 1 but somewhere between these limits. The closer
it is to 1, the greater is said to be the degree of linear association between X and Y .



Chapter 2 Inferences in Regression and Correlation Analysis 75

FIGURE 2.8
Scatter Plots
when R2 = 1
and R2 = 0.
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Example For the Toluca Company example, we obtained SSTO = 307,203 and SSR = 252,378.
Hence:

R2 = 252,378

307,203
= .822

Thus, the variation in work hours is reduced by 82.2 percent when lot size is considered.
The MINITAB output in Figure 2.2 shows the coefficient of determination R2 labeled

as R–sq in percent form. The output also shows the coefficient R–sq(adj), which will be
explained in Chapter 6.

Limitations of R2

We noted that no single measure will be adequate for describing the usefulness of a regres-
sion model for different applications. Still, the coefficient of determination is widely used.
Unfortunately, it is subject to serious misunderstandings. We consider now three common
misunderstandings:

Misunderstanding 1. A high coefficient of determination indicates that useful
predictions can be made. This is not necessarily correct. In the Toluca Company
example, we saw that the coefficient of determination was high (R2 = .82). Yet the
90 percent prediction interval for the next lot, consisting of 100 units, was wide (332
to 507 hours) and not precise enough to permit management to schedule workers
effectively.

Misunderstanding 2. A high coefficient of determination indicates that the estimated
regression line is a good fit. Again, this is not necessarily correct. Figure 2.9a shows
a scatter plot where the coefficient of determination is high (R2 = .69). Yet a linear
regression function would not be a good fit since the regression relation is curvilinear.

Misunderstanding 3. A coefficient of determination near zero indicates that X and Y
are not related. This also is not necessarily correct. Figure 2.9b shows a scatter plot
where the coefficient of determination between X and Y is R2 = .02. Yet X and Y are
strongly related; however, the relationship between the two variables is curvilinear.
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FIGURE 2.9
Illustrations
of Two Misun-
derstandings
about
Coefficient of
Determination.
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Misunderstanding 1 arises because R2 measures only a relative reduction from SSTO
and provides no information about absolute precision for estimating a mean response or
predicting a new observation. Misunderstandings 2 and 3 arise because R2 measures the
degree of linear association between X and Y , whereas the actual regression relation may
be curvilinear.

Coefficient of Correlation
A measure of linear association between Y and X when both Y and X are random is the
coefficient of correlation. This measure is the signed square root of R2:

r = ±
√

R2 (2.73)

A plus or minus sign is attached to this measure according to whether the slope of the fitted
regression line is positive or negative. Thus, the range of r is: −1 ≤ r ≤ 1.

Example For the Toluca Company example, we obtained R2 = .822. Treating X as a random variable,
the correlation coefficient here is:

r = +
√

.822 = .907

The plus sign is affixed since b1 is positive. We take up the topic of correlation analysis in
more detail in Section 2.11.

Comments
1. The value taken by R2 in a given sample tends to be affected by the spacing of the X observations.

This is implied in (2.72). SSE is not affected systematically by the spacing of the Xi since, for regression
model (2.1), σ 2{Yi } = σ 2 at all X levels. However, the wider the spacing of the Xi in the sample
when b1 �= 0, the greater will tend to be the spread of the observed Yi around Ȳ and hence the greater
SSTO will be. Consequently, the wider the Xi are spaced, the higher R2 will tend to be.

2. The regression sum of squares SSR is often called the “explained variation” in Y , and the residual
sum of squares SSE is called the “unexplained variation.” The coefficient R2 then is interpreted in terms
of the proportion of the total variation in Y (SSTO) which has been “explained” by X . Unfortunately,
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this terminology frequently is taken literally and, hence, misunderstood. Remember that in a regression
model there is no implication that Y necessarily depends on X in a causal or explanatory sense.

3. Regression models do not contain a parameter to be estimated by R2 or r . These are simply
descriptive measures of the degree of linear association between X and Y in the sample observations
that may, or may not, be useful in any instance.

2.10 Considerations in Applying Regression Analysis
We have now discussed the major uses of regression analysis—to make inferences about
the regression parameters, to estimate the mean response for a given X , and to predict
a new observation Y for a given X . It remains to make a few cautionary remarks about
implementing applications of regression analysis.

1. Frequently, regression analysis is used to make inferences for the future. For instance,
for planning staffing requirements, a school board may wish to predict future enrollments by
using a regression model containing several demographic variables as predictor variables.
In applications of this type, it is important to remember that the validity of the regression
application depends upon whether basic causal conditions in the period ahead will be similar
to those in existence during the period upon which the regression analysis is based. This
caution applies whether mean responses are to be estimated, new observations predicted,
or regression parameters estimated.

2. In predicting new observations on Y , the predictor variable X itself often has to be
predicted. For instance, we mentioned earlier the prediction of company sales for next year
from the demographic projection of the number of persons 16 years of age or older next
year. A prediction of company sales under these circumstances is a conditional prediction,
dependent upon the correctness of the population projection. It is easy to forget the condi-
tional nature of this type of prediction.

3. Another caution deals with inferences pertaining to levels of the predictor variable
that fall outside the range of observations. Unfortunately, this situation frequently occurs
in practice. A company that predicts its sales from a regression relation of company sales
to disposable personal income will often find the level of disposable personal income of
interest (e.g., for the year ahead) to fall beyond the range of past data. If the X level does
not fall far beyond this range, one may have reasonable confidence in the application of the
regression analysis. On the other hand, if the X level falls far beyond the range of past data,
extreme caution should be exercised since one cannot be sure that the regression function
that fits the past data is appropriate over the wider range of the predictor variable.

4. A statistical test that leads to the conclusion that β1 �= 0 does not establish a cause-
and-effect relation between the predictor and response variables. As we noted in Chapter 1,
with nonexperimental data both the X and Y variables may be simultaneously influenced by
other variables not in the regression model. On the other hand, the existence of a regression
relation in controlled experiments is often good evidence of a cause-and-effect relation.

5. We should note again that frequently we wish to estimate several mean responses
or predict several new observations for different levels of the predictor variable, and that
special problems arise in this case. The confidence coefficients for the limits (2.33) for
estimating a mean response and for the prediction limits (2.36) for a new observation apply
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only for a single level of X for a given sample. In Chapter 4, we discuss how to make
multiple inferences from a given sample.

6. Finally, when observations on the predictor variable X are subject to measurement
errors, the resulting parameter estimates are generally no longer unbiased. In Chapter 4, we
discuss several ways to handle this situation.

2.11 Normal Correlation Models

Distinction between Regression and Correlation Model
The normal error regression model (2.1), which has been used throughout this chapter
and which will continue to be used, assumes that the X values are known constants. As a
consequence of this, the confidence coefficients and risks of errors refer to repeated sampling
when the X values are kept the same from sample to sample.

Frequently, it may not be appropriate to consider the X values as known constants. For
instance, consider regressing daily bathing suit sales by a department store on mean daily
temperature. Surely, the department store cannot control daily temperatures, so it would not
be meaningful to think of repeated sampling where the temperature levels are the same from
sample to sample. As a second example, an analyst may use a correlation model for the two
variables “height of person” and “weight of person” in a study of a sample of persons, each
variable being taken as random. The analyst might wish to study the relation between the
two variables or might be interested in making inferences about weight of a person on the
basis of the person’s height, in making inferences about height on the basis of weight, or in
both.

Other examples where a correlation model, rather than a regression model, may be
appropriate are:

1. To study the relation between service station sales of gasoline, and sales of auxiliary
products.

2. To study the relation between company net income determined by generally accepted
accounting principles and net income according to tax regulations.

3. To study the relation between blood pressure and age in human subjects.

The correlation model most widely employed is the normal correlation model. We discuss
it here for the case of two variables.

Bivariate Normal Distribution
The normal correlation model for the case of two variables is based on the bivariate normal
distribution. Let us denote the two variables as Y1 and Y2. (We do not use the notation X and
Y here because both variables play a symmetrical role in correlation analysis.) We say that
Y1 and Y2 are jointly normally distributed if the density function of their joint distribution
is that of the bivariate normal distribution.
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FIGURE 2.10
Example of
Bivariate
Normal
Distribution.
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Density Function. The density function of the bivariate normal distribution is as follows:

f (Y1, Y2) = 1

2πσ1σ2
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Y2 − µ2

σ2

)2]}

(2.74)

Note that this density function involves five parameters: µ1, µ2, σ1, σ2, ρ12. We shall explain
the meaning of these parameters shortly. First, let us consider a graphic representation of
the bivariate normal distribution.

Figure 2.10 contains a SYSTAT three-dimensional plot of a bivariate normal probability
distribution. The probability distribution is a surface in three-dimensional space. For every
pair of (Y1, Y2) values, the density f (Y1, Y2) represents the height of the surface at that
point. The surface is continuous, and probability corresponds to volume under the surface.

Marginal Distributions. If Y1 and Y2 are jointly normally distributed, it can be shown
that their marginal distributions have the following characteristics:

The marginal distribution of Y1 is normal with mean µ1

and standard deviation σ1: (2.75a)

f1(Y1) = 1√
2πσ1

exp

[

− 1

2

(
Y1 − µ1

σ1

)2]

The marginal distribution of Y2 is normal with mean µ2

and standard deviation σ2: (2.75b)

f2(Y2) = 1√
2πσ2

exp

[

− 1

2

(
Y2 − µ2

σ2

)2]

Thus, when Y1 and Y2 are jointly normally distributed, each of the two variables by itself
is normally distributed. The converse, however, is not generally true; if Y1 and Y2 are each
normally distributed, they need not be jointly normally distributed in accord with (2.74).
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Meaning of Parameters. The five parameters of the bivariate normal density func-
tion (2.74) have the following meaning:

1. µ1 and σ1 are the mean and standard deviation of the marginal distribution of Y1.

2. µ2 and σ2 are the mean and standard deviation of the marginal distribution of Y2.

3. ρ12 is the coefficient of correlation between the random variables Y1 and Y2. This
coefficient is denoted by ρ{Y1, Y2} in Appendix A, using the correlation operator notation,
and defined in (A.25a):

ρ12 = ρ{Y1, Y2} = σ12

σ1σ2
(2.76)

Here, σ1 and σ2, as just mentioned, denote the standard deviations of Y1 and Y2, and σ12

denotes the covariance σ {Y1, Y2} between Y1 and Y2 as defined in (A.21):

σ12 = σ {Y1, Y2} = E{(Y1 − µ1)(Y2 − µ2)} (2.77)

Note that σ12 ≡ σ21 and ρ12 ≡ ρ21.

If Y1 and Y2 are independent, σ12 = 0 according to (A.28) so that ρ12 = 0. If Y1 and
Y2 are positively related—that is, Y1 tends to be large when Y2 is large, or small when
Y2 is small— σ12 is positive and so is ρ12. On the other hand, if Y1 and Y2 are negatively
related—that is, Y1 tends to be large when Y2 is small, or vice versa— σ12 is negative and so
is ρ12. The coefficient of correlation ρ12 can take on any value between −1 and 1 inclusive.
It assumes 1 if the linear relation between Y1 and Y2 is perfectly positive (direct) and −1 if
it is perfectly negative (inverse).

Conditional Inferences
As noted, one principal use of a bivariate correlation model is to make conditional inferences
regarding one variable, given the other variable. Suppose Y1 represents a service station’s
gasoline sales and Y2 its sales of auxiliary products. We may then wish to predict a service
station’s sales of auxiliary products Y2, given that its gasoline sales are Y1 = $5,500.

Such conditional inferences require the use of conditional probability distributions, which
we discuss next.

Conditional Probability Distribution of Y1. The density function of the conditional
probability distribution of Y1 for any given value of Y2 is denoted by f (Y1|Y2) and defined
as follows:

f (Y1|Y2) = f (Y1, Y2)

f2(Y2)
(2.78)

where f (Y1, Y2) is the joint density function of Y1 and Y2, and f2(Y2) is the marginal density
function of Y2. When Y1 and Y2 are jointly normally distributed according to (2.74) so that
the marginal density function f2(Y2) is given by (2.75b), it can be shown that:

The conditional probability distribution of Y1 for any given
value of Y2 is normal with mean α1|2 + β12Y2 and standard
deviation σ1|2 and its density function is: (2.79)

f (Y1|Y2) = 1√
2πσ1|2

exp

[

− 1

2

(
Y1 − α1|2 − β12Y2

σ1|2

)2 ]
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The parameters α1|2, β12, and σ1|2 of the conditional probability distributions of Y1 are
functions of the parameters of the joint probability distribution (2.74), as follows:

α1|2 = µ1 − µ2ρ12
σ1

σ2
(2.80a)

β12 = ρ12
σ1

σ2
(2.80b)

σ 2
1|2 = σ 2

1

(
1 − ρ2

12

)
(2.80c)

The parameter α1|2 is the intercept of the line of regression of Y1 on Y2, and the parameter
β12 is the slope of this line. Thus we find that the conditional distribution of Y1, given Y2, is
equivalent to the normal error regression model (1.24).

Conditional Probability Distributions of Y2. The random variables Y1 and Y2 play sym-
metrical roles in the bivariate normal probability distribution (2.74). Hence, it follows:

The conditional probability distribution of Y2 for any given
value of Y1 is normal with mean α2|1 + β21Y1 and standard
deviation σ2|1 and its density function is: (2.81)

f (Y2|Y1) = 1√
2πσ2|1

exp

[

− 1

2

(
Y2 − α2|1 − β21Y1

σ2|1

)2 ]

The parameters α2|1, β21, and σ2|1 of the conditional probability distributions of Y2 are
functions of the parameters of the joint probability distribution (2.74), as follows:

α2|1 = µ2 − µ1ρ12
σ2

σ1
(2.82a)

β21 = ρ12
σ2

σ1
(2.82b)

σ 2
2|1 = σ 2

2

(
1 − ρ2

12

)
(2.82c)

Important Characteristics of Conditional Distributions. Three important characteris-
tics of the conditional probability distributions of Y1 are normality, linear regression, and
constant variance. We take up each of these in turn.

1. The conditional probability distribution of Y1 for any given value of Y2 is normal.
Imagine that we slice a bivariate normal distribution vertically at a given value of Y2, say,
at Yh2. That is, we slice it parallel to the Y1 axis. This slicing is shown in Figure 2.11. The
exposed cross section has the shape of a normal distribution, and after being scaled so that
its area is 1, it portrays the conditional probability distribution of Y1, given that Y2 = Yh2.

This property of normality holds no matter what the value Yh2 is. Thus, whenever we
slice the bivariate normal distribution parallel to the Y1 axis, we obtain (after proper scaling)
a normal conditional probability distribution.

2. The means of the conditional probability distributions of Y1 fall on a straight line, and
hence are a linear function of Y2:

E{Y1|Y2} = α1|2 + β12Y2 (2.83)
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FIGURE 2.11
Cross Section
of Bivariate
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at Y h2.
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Here, α1|2 is the intercept parameter and β12 the slope parameter. Thus, the relation between
the conditional means and Y2 is given by a linear regression function.

3. All conditional probability distributions of Y1 have the same standard deviation σ1|2.
Thus, no matter where we slice the bivariate normal distribution parallel to the Y1 axis,
the resulting conditional probability distribution (after scaling to have an area of 1) has the
same standard deviation. Hence, constant variances characterize the conditional probability
distributions of Y1.

Equivalence to Normal Error Regression Model. Suppose that we select a random
sample of observations (Y1, Y2) from a bivariate normal population and wish to make
conditional inferences about Y1, given Y2. The preceding discussion makes it clear that the
normal error regression model (1.24) is entirely applicable because:

1. The Y1 observations are independent.
2. The Y1 observations when Y2 is considered given or fixed are normally distributed with

mean E{Y1|Y2} = α1|2 + β12Y2 and constant variance σ 2
1|2.

Use of Regression Analysis. In view of the equivalence of each of the conditional bivariate
normal correlation models (2.81) and (2.79) with the normal error regression model (1.24),
all conditional inferences with these correlation models can be made by means of the
usual regression methods. For instance, if a researcher has data that can be appropriately
described as having been generated from a bivariate normal distribution and wishes to make
inferences about Y2, given a particular value of Y1, the ordinary regression techniques will
be applicable. Thus, the regression function of Y2 on Y1 can be estimated by means of (1.12),
the slope of the regression line can be estimated by means of the interval estimate (2.15),
a new observation Y2, given the value of Y1, can be predicted by means of (2.36), and so
on. Computer regression packages can be used in the usual manner. To avoid notational
problems, it may be helpful to relabel the variables according to regression usage: Y = Y2,
X = Y1. Of course, if conditional inferences on Y1 for given values of Y2 are desired, the
notation correspondences would be: Y = Y1, X = Y2.
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Can we still use regression model (2.1) if Y1 and Y2 are not bivariate normal? It can be
shown that all results on estimation, testing, and prediction obtained from regression model
(2.1) apply if Y1 = Y and Y2 = X are random variables, and if the following conditions
hold:

1. The conditional distributions of the Yi , given Xi , are normal and independent, with
conditional means β0 + β1 Xi and conditional variance σ 2.

2. The Xi are independent random variables whose probability distribution g(Xi ) does not
involve the parameters β0, β1, σ 2.

These conditions require only that regression model (2.1) is appropriate for each condi-
tional distribution of Yi , and that the probability distribution of the Xi does not involve the
regression parameters. If these conditions are met, all earlier results on estimation, testing,
and prediction still hold even though the Xi are now random variables. The major modi-
fication occurs in the interpretation of confidence coefficients and specified risks of error.
When X is random, these refer to repeated sampling of pairs of (Xi , Yi ) values, where the
Xi values as well as the Yi values change from sample to sample. Thus, in our bathing suit
sales illustration, a confidence coefficient would refer to the proportion of correct interval
estimates if repeated samples of n days’ sales and temperatures were obtained and the
confidence interval calculated for each sample. Another modification occurs in the test’s
power, which is different when X is a random variable.

Comments
1. The notation for the parameters of the conditional correlation models departs somewhat from

our previous notation for regression models. The symbol α is now used to denote the regression
intercept. The subscript 1|2 to α indicates that Y1 is regressed on Y2. Similarly, the subscript 2|1 to α

indicates that Y2 is regressed on Y1. The symbol β12 indicates that it is the slope in the regression of Y1

on Y2, while β21 is the slope in the regression of Y2 on Y1. Finally, σ2|1 is the standard deviation of the
conditional probability distributions of Y2 for any given Y1, while σ1|2 is the standard deviation of the
conditional probability distributions of Y1 for any given Y2.

2. Two distinct regressions are involved in a bivariate normal model, that of Y1 on Y2 when Y2 is
fixed and that of Y2 on Y1 when Y1 is fixed. In general, the two regression lines are not the same. For
instance, the two slopes β12 and β21 are the same only if σ1 = σ2, as can be seen from (2.80b) and
(2.82b).

3. When interval estimates for the conditional correlation models are obtained, the confidence
coefficient refers to repeated samples where pairs of observations (Y1, Y2) are obtained from the
bivariate normal distribution.

Inferences on Correlation Coefficients
A principal use of the bivariate normal correlation model is to study the relationship between
two variables. In a bivariate normal model, the parameter ρ12 provides information about
the degree of the linear relationship between the two variables Y1 and Y2.

Point Estimator of ρ12. The maximum likelihood estimator of ρ12, denoted by r12, is
given by:

r12 =
∑

(Yi1 − Ȳ1)(Yi2 − Ȳ 2)
[∑

(Yi1 − Ȳ 1)2
∑

(Yi2 − Ȳ 2)2
]1/2 (2.84)
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This estimator is often called the Pearson product-moment correlation coefficient. It is a
biased estimator of ρ12 (unless ρ12 = 0 or 1), but the bias is small when n is large.

It can be shown that the range of r12 is:

−1 ≤ r12 ≤ 1 (2.85)

Generally, values of r12 near 1 indicate a strong positive (direct) linear association be-
tween Y1 and Y2 whereas values of r12 near −1 indicate a strong negative (indirect) linear
association. Values of r12 near 0 indicate little or no linear association between Y1 and Y2.

Test whether ρ12 = 0. When the population is bivariate normal, it is frequently desired
to test whether the coefficient of correlation is zero:

H0: ρ12 = 0

Ha: ρ12 �= 0
(2.86)

The reason for interest in this test is that in the case where Y1 and Y2 are jointly normally
distributed, ρ12 = 0 implies that Y1 and Y2 are independent.

We can use regression procedures for the test since (2.80b) implies that the following
alternatives are equivalent to those in (2.86):

H0: β12 = 0

Ha: β12 �= 0
(2.86a)

and (2.82b) implies that the following alternatives are also equivalent to the ones in (2.86):

H0: β21 = 0

Ha: β21 �= 0
(2.86b)

It can be shown that the test statistics for testing either (2.86a) or (2.86b) are the same
and can be expressed directly in terms of r12:

t∗ = r12

√
n − 2

√
1 − r 2

12

(2.87)

If H0 holds, t∗ follows the t (n − 2) distribution. The appropriate decision rule to control
the Type I error at α is:

If |t∗| ≤ t (1 − α/2; n − 2), conclude H0

If |t∗| > t (1 − α/2; n − 2), conclude Ha
(2.88)

Test statistic (2.87) is identical to the regression t∗ test statistic (2.17).

Example A national oil company was interested in the relationship between its service station gasoline
sales and its sales of auxiliary products. A company analyst obtained a random sample of
23 of its service stations and obtained average monthly sales data on gasoline sales (Y1)
and comparable sales of its auxiliary products and services (Y2). These data (not shown)
resulted in an estimated correlation coefficient r12 = .52. Suppose the analyst wished to test
whether or not the association was positive, controlling the level of significance at α = .05.
The alternatives would then be:

H0: ρ12 ≤ 0

Ha: ρ12 > 0
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and the decision rule based on test statistic (2.87) would be:

If t∗ ≤ t (1 − α; n − 2), conclude H0

If t∗ > t (1 − α; n − 2), conclude Ha

For α = .05, we require t (.95; 21) = 1.721. Since:

t∗ = .52
√

21
√

1 − (.52)2
= 2.79

is greater than 1.721, we would conclude Ha , that ρ12 > 0. The P-value for this test is .006.

Interval Estimation of ρ12 Using the z′ Transformation. Because the sampling distri-
bution of r12 is complicated when ρ12 �= 0, interval estimation of ρ12 is usually carried
out by means of an approximate procedure based on a transformation. This transformation,
known as the Fisher z transformation, is as follows:

z′ = 1

2
loge

(
1 + r12

1 − r12

)

(2.89)

When n is large (25 or more is a useful rule of thumb), the distribution of z′ is approximately
normal with approximate mean and variance:

E{z′} = ζ = 1

2
loge

(
1 + ρ12

1 − ρ12

)

(2.90)

σ 2{z′} = 1

n − 3
(2.91)

Note that the transformation from r12 to z′ in (2.89) is the same as the relation in (2.90)
between ρ12 and E{z′} = ζ . Also note that the approximate variance of z′ is a known
constant, depending only on the sample size n.

Table B.8 gives paired values for the left and right sides of (2.89) and (2.90), thus elim-
inating the need for calculations. For instance, if r12 or ρ12 equals .25, Table B.8 indicates
that z′ or ζ equals .2554, and vice versa. The values on the two sides of the transformation
always have the same sign. Thus, if r12 or ρ12 is negative, a minus sign is attached to the
value in Table B.8. For instance, if r12 = −.25, z′ = −.2554.

Interval Estimate. When the sample size is large (n ≥ 25), the standardized statistic:

z′ − ζ

σ {z′} (2.92)

is approximately a standard normal variable. Therefore, approximate 1−α confidence limits
for ζ are:

z′ ± z(1 − α/2)σ {z′} (2.93)

where z(1 − α/2) is the (1 − α/2)100 percentile of the standard normal distribution. The
1 − α confidence limits for ρ12 are then obtained by transforming the limits on ζ by means
of (2.90).
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Example An economist investigated food purchasing patterns by households in a midwestern city.
Two hundred households with family incomes between $40,000 and $60,000 were selected
to ascertain, among other things, the proportions of the food budget expended for beef and
poultry, respectively. The economist expected these to be negatively related, and wished to
estimate the coefficient of correlation with a 95 percent confidence interval. Some supporting
evidence suggested that the joint distribution of the two variables does not depart markedly
from a bivariate normal one.

The point estimate of ρ12 was r12 = −.61 (data and calculations not shown). To obtain
an approximate 95 percent confidence interval estimate, we require:

z′ = −.7089 when r12 = −.61 (from Table B.8)

σ {z′} = 1√
200 − 3

= .07125

z(.975) = 1.960

Hence, the confidence limits for ζ , by (2.93), are −.7089 ± 1.960(.07125), and the approx-
imate 95 percent confidence interval is:

−.849 ≤ ζ ≤ −.569

Using Table B.8 to transform back to ρ12, we obtain:

−.69 ≤ ρ12 ≤ −.51

This confidence interval was sufficiently precise to be useful to the economist, confirming
the negative relation and indicating that the degree of linear association is moderately high.

Comments
1. As usual, a confidence interval for ρ12 can be employed to test whether or not ρ12 has a specified

value—say, .5—by noting whether or not the specified value falls within the confidence limits.

2. It can be shown that the square of the coefficient of correlation, namely ρ2
12, measures the

relative reduction in the variability of Y2 associated with the use of variable Y1. To see this, we noted
earlier in (2.80c) and (2.82c) that:

σ 2
1|2 = σ 2

1

(
1 − ρ2

12

)
(2.94a)

σ 2
2|1 = σ 2

2

(
1 − ρ2

12

)
(2.94b)

We can rewrite these expressions as follows:

ρ2
12 = σ 2

1 − σ 2
1|2

σ 2
1

(2.95a)

ρ2
12 = σ 2

2 − σ 2
2|1

σ 2
2

(2.95b)

The meaning of ρ2
12 is now clear. Consider first (2.95a). ρ2

12 measures how much smaller relatively is
the variability in the conditional distributions of Y1, for any given level of Y2, than is the variability
in the marginal distribution of Y1. Thus, ρ2

12 measures the relative reduction in the variability of Y1

associated with the use of variable Y2. Correspondingly, (2.95b) shows that ρ2
12 also measures the

relative reduction in the variability of Y2 associated with the use of variable Y1.
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It can be shown that:

0 ≤ ρ2
12 ≤ 1 (2.96)

The limiting value ρ2
12 = 0 occurs when Y1 and Y2 are independent, so that the variances of each

variable in the conditional probability distributions are then no smaller than the variance in the
marginal distribution. The limiting value ρ2

12 = 1 occurs when there is no variability in the conditional
probability distributions for each variable, so perfect predictions of either variable can be made from
the other.

3. The interpretation of ρ2
12 as measuring the relative reduction in the conditional variances as

compared with the marginal variance is valid for the case of a bivariate normal population, but not
for many other bivariate populations. Of course, the interpretation implies nothing in a causal sense.

4. Confidence limits for ρ2
12 can be obtained by squaring the respective confidence limits for ρ12,

provided the latter limits do not differ in sign.

Spearman Rank Correlation Coefficient
At times the joint distribution of two random variables Y1 and Y2 differs considerably from
the bivariate normal distribution (2.74). In those cases, transformations of the variables Y1

and Y2 may be sought to make the joint distribution of the transformed variables approx-
imately bivariate normal and thus permit the use of the inference procedures about ρ12

described earlier.
When no appropriate transformations can be found, a nonparametric rank correlation

procedure may be useful for making inferences about the association between Y1 and Y2. The
Spearman rank correlation coefficient is widely used for this purpose. First, the observations
on Y1 (i.e., Y11, . . . , Yn1) are expressed in ranks from 1 to n. We denote the rank of Yi1 by
Ri1. Similarly, the observations on Y2 (i.e., Y12, . . . , Yn2) are ranked, with the rank of Yi2

denoted by Ri2. The Spearman rank correlation coefficient, to be denoted by rS , is then
defined as the ordinary Pearson product-moment correlation coefficient in (2.84) based on
the rank data:

rS =
∑

(Ri1 − R̄1)(Ri2 − R̄2)
[∑

(Ri1 − R̄1)2
∑

(Ri2 − R̄2)2
]1/2 (2.97)

Here R̄1 is the mean of the ranks Ri1 and R̄2 is the mean of the ranks Ri2. Of course, since
the ranks Ri1 and Ri2 are the integers 1, . . . , n, it follows that R̄1 = R̄2 = (n + 1)/2.

Like an ordinary correlation coefficient, the Spearman rank correlation coefficient takes
on values between −1 and 1 inclusive:

−1 ≤ rS ≤ 1 (2.98)

The coefficient rS equals 1 when the ranks for Y1 are identical to those for Y2, that is, when
the case with rank 1 for Y1 also has rank 1 for Y2, and so on. In that case, there is perfect
association between the ranks for the two variables. The coefficient rS equals −1 when the
case with rank 1 for Y1 has rank n for Y2, the case with rank 2 for Y1 has rank n − 1 for
Y2, and so on. In that event, there is perfect inverse association between the ranks for the
two variables. When there is little, if any, association between the ranks of Y1 and Y2, the
Spearman rank correlation coefficient tends to have a value near zero.
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The Spearman rank correlation coefficient can be used to test the alternatives:

H0: There is no association between Y1and Y2

Ha: There is an association between Y1 and Y2
(2.99)

A two-sided test is conducted here since Ha includes either positive or negative association.
When the alternative Ha is:

Ha: There is positive (negative) association between Y1 and Y2 (2.100)

an upper-tail (lower-tail) one-sided test is conducted.
The probability distribution of rS under H0 is not difficult to obtain. It is based on the

condition that, for any ranking of Y1, all rankings of Y2 are equally likely when there is no
association between Y1 and Y2. Tables have been prepared and are presented in specialized
texts such as Reference 2.1. Computer packages generally do not present the probability
distribution of rS under H0 but give only the two-sided P-value. When the sample size n
exceeds 10, the test can be carried out approximately by using test statistic (2.87):

t∗ = rS

√
n − 2

√
1 − r 2

S

(2.101)

based on the t distribution with n − 2 degrees of freedom.

Example A market researcher wished to examine whether an association exists between population
size (Y1) and per capita expenditures for a new food product (Y2). The data for a random
sample of 12 test markets are given in Table 2.4, columns 1 and 2. Because the distributions of
the variables do not appear to be approximately normal, a nonparametric test of association
is desired. The ranks for the variables are given in Table 2.4, columns 3 and 4. A computer
package found that the coefficient of simple correlation between the ranked data in columns
3 and 4 is rS = .895. The alternatives of interest are the two-sided ones in (2.99). Since n

TABLE 2.4
Data on
Population and
Expenditures
and Their
Ranks—Sales
Marketing
Example.

(1) (2) (3) (4)
Per Capita

Test Population Expenditure
Market (in thousands) (dollars)

i Yi1 Yi2 Ri1 Ri2

1 29 127 1 2
2 435 214 8 11
3 86 133 3 4
4 1,090 208 11 10
5 219 153 7 6
6 503 184 9 8
7 47 130 2 3
8 3,524 217 12 12
9 185 141 6 5

10 98 154 5 7
11 952 194 10 9
12 89 103 4 1
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exceeds 10 here, we use test statistic (2.101):

t∗ = .895
√

12 − 2
√

1 − (.895)2
= 6.34

For α = .01, we require t (.995; 10) = 3.169. Since |t∗| = 6.34 > 3.169, we conclude Ha ,
that there is an association between population size and per capita expenditures for the food
product. The two-sided P-value of the test is .00008.

Comments
1. In case of ties among some data values, each of the tied values is given the average of the ranks

involved.

2. It is interesting to note that had the data in Table 2.4 been analyzed by assuming the bivariate
normal distribution assumption (2.74) and test statistic (2.87), then the strength of the association
would have been somewhat weaker. In particular, the Pearson product-moment correlation coefficient
is r12 = .674, with t∗ = .674

√
10/

√
1 − (.674)2 = 2.885. Our conclusion would have been to

conclude H0, that there is no association between population size and per capita expenditures for the
food product. The two-sided P-value of the test is .016.

3. Another nonparametric rank procedure similar to Spearman’s rS is Kendall’s τ . This statistic
also measures how far the rankings of Y1 and Y2 differ from each other, but in a somewhat different
way than the Spearman rank correlation coefficient. A discussion of Kendall’s τ may be found in
Reference 2.2.
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American Sciences Press, 1985.
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Problems 2.1. A student working on a summer internship in the economic research department of a large
corporation studied the relation between sales of a product (Y , in million dollars) and population
(X , in million persons) in the firm’s 50 marketing districts. The normal error regression model
(2.1) was employed. The student first wished to test whether or not a linear association between
Y and X existed. The student accessed a simple linear regression program and obtained the
following information on the regression coefficients:

95 Percent
Parameter Estimated Value Confidence Limits

Intercept 7.43119 −1.18518 16.0476
Slope .755048 .452886 1.05721

a. The student concluded from these results that there is a linear association between Y and
X . Is the conclusion warranted? What is the implied level of significance?

b. Someone questioned the negative lower confidence limit for the intercept, pointing out that
dollar sales cannot be negative even if the population in a district is zero. Discuss.

2.2. In a test of the alternatives H0: β1 ≤ 0 versus Ha : β1 > 0, an analyst concluded H0. Does this
conclusion imply that there is no linear association between X and Y ? Explain.
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2.3. A member of a student team playing an interactive marketing game received the following
computer output when studying the relation between advertising expenditures (X) and sales
(Y ) for one of the team’s products:

Estimated regression equation: Ŷ = 350.7 − .18X

Two-sided P-value for estimated slope: .91

The student stated: “The message I get here is that the more we spend on advertising this
product, the fewer units we sell!” Comment.

2.4. Refer to Grade point average Problem 1.19.

a. Obtain a 99 percent confidence interval for β1. Interpret your confidence interval. Does it
include zero? Why might the director of admissions be interested in whether the confidence
interval includes zero?

b. Test, using the test statistic t∗, whether or not a linear association exists between student’s
ACT score (X) and GPA at the end of the freshman year (Y ). Use a level of significance of
.01. State the alternatives, decision rule, and conclusion.

c. What is the P-value of your test in part (b)? How does it support the conclusion reached in
part (b)?

*2.5. Refer to Copier maintenance Problem 1.20.

a. Estimate the change in the mean service time when the number of copiers serviced increases
by one. Use a 90 percent confidence interval. Interpret your confidence interval.

b. Conduct a t test to determine whether or not there is a linear association between X and Y
here; control the α risk at .10. State the alternatives, decision rule, and conclusion. What is
the P-value of your test?

c. Are your results in parts (a) and (b) consistent? Explain.

d. The manufacturer has suggested that the mean required time should not increase by more
than 14 minutes for each additional copier that is serviced on a service call. Conduct a test to
decide whether this standard is being satisfied by Tri-City. Control the risk of a Type I error
at .05. State the alternatives, decision rule, and conclusion. What is the P-value of the test?

e. Does b0 give any relevant information here about the “start-up” time on calls—i.e., about
the time required before service work is begun on the copiers at a customer location?

*2.6. Refer to Airfreight breakage Problem 1.21.

a. Estimate β1 with a 95 percent confidence interval. Interpret your interval estimate.

b. Conduct a t test to decide whether or not there is a linear association between number of times
a carton is transferred (X) and number of broken ampules (Y ). Use a level of significance
of .05. State the alternatives, decision rule, and conclusion. What is the P-value of the test?

c. β0 represents here the mean number of ampules broken when no transfers of the shipment
are made—i.e., when X = 0. Obtain a 95 percent confidence interval for β0 and interpret it.

d. A consultant has suggested, on the basis of previous experience, that the mean number of
broken ampules should not exceed 9.0 when no transfers are made. Conduct an appropriate
test, using α = .025. State the alternatives, decision rule, and conclusion. What is the
P-value of the test?

e. Obtain the power of your test in part (b) if actually β1 = 2.0. Assume σ {b1} = .50. Also
obtain the power of your test in part (d) if actually β0 = 11. Assume σ {b0} = .75.

2.7. Refer to Plastic hardness Problem 1.22.

a. Estimate the change in the mean hardness when the elapsed time increases by one hour. Use
a 99 percent confidence interval. Interpret your interval estimate.



Chapter 2 Inferences in Regression and Correlation Analysis 91

b. The plastic manufacturer has stated that the mean hardness should increase by 2 Brinell
units per hour. Conduct a two-sided test to decide whether this standard is being satisfied;
use α = .01. State the alternatives, decision rule, and conclusion. What is the P-value of
the test?

c. Obtain the power of your test in part (b) if the standard actually is being exceeded by
.3 Brinell units per hour. Assume σ {b1} = .1.

2.8. Refer to Figure 2.2 for the Toluca Company example. A consultant has advised that an increase
of one unit in lot size should require an increase of 3.0 in the expected number of work hours
for the given production item.

a. Conduct a test to decide whether or not the increase in the expected number of work hours
in the Toluca Company equals this standard. Use α = .05. State the alternatives, decision
rule, and conclusion.

b. Obtain the power of your test in part (a) if the consultant’s standard actually is being exceeded
by .5 hour. Assume σ {b1} = .35.

c. Why is F∗ = 105.88, given in the printout, not relevant for the test in part (a)?

2.9. Refer to Figure 2.2. A student, noting that s{b1} is furnished in the printout, asks why s{Ŷh} is
not also given. Discuss.

2.10. For each of the following questions, explain whether a confidence interval for a mean response
or a prediction interval for a new observation is appropriate.

a. What will be the humidity level in this greenhouse tomorrow when we set the temperature
level at 31◦C?

b. How much do families whose disposable income is $23,500 spend, on the average, for meals
away from home?

c. How many kilowatt-hours of electricity will be consumed next month by commercial and
industrial users in the Twin Cities service area, given that the index of business activity for
the area remains at its present level?

2.11. A person asks if there is a difference between the “mean response at X = Xh” and the “mean
of m new observations at X = Xh .” Reply.

2.12. Can σ 2{pred} in (2.37) be brought increasingly close to 0 as n becomes large? Is this also the
case for σ 2{Ŷh} in (2.29b)? What is the implication of this difference?

2.13. Refer to Grade point average Problem 1.19.

a. Obtain a 95 percent interval estimate of the mean freshman GPA for students whose ACT
test score is 28. Interpret your confidence interval.

b. Mary Jones obtained a score of 28 on the entrance test. Predict her freshman GPA using a
95 percent prediction interval. Interpret your prediction interval.

c. Is the prediction interval in part (b) wider than the confidence interval in part (a)? Should it
be?

d. Determine the boundary values of the 95 percent confidence band for the regression line
when Xh = 28. Is your confidence band wider at this point than the confidence interval in
part (a)? Should it be?

*2.14. Refer to Copier maintenance Problem 1.20.

a. Obtain a 90 percent confidence interval for the mean service time on calls in which six
copiers are serviced. Interpret your confidence interval.

b. Obtain a 90 percent prediction interval for the service time on the next call in which six
copiers are serviced. Is your prediction interval wider than the corresponding confidence
interval in part (a)? Should it be?
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c. Management wishes to estimate the expected service time per copier on calls in which six
copiers are serviced. Obtain an appropriate 90 percent confidence interval by converting the
interval obtained in part (a). Interpret the converted confidence interval.

d. Determine the boundary values of the 90 percent confidence band for the regression line
when Xh = 6. Is your confidence band wider at this point than the confidence interval in
part (a)? Should it be?

*2.15. Refer to Airfreight breakage Problem 1.21.

a. Because of changes in airline routes, shipments may have to be transferred more frequently
than in the past. Estimate the mean breakage for the following numbers of transfers: X = 2,
4. Use separate 99 percent confidence intervals. Interpret your results.

b. The next shipment will entail two transfers. Obtain a 99 percent prediction interval for the
number of broken ampules for this shipment. Interpret your prediction interval.

c. In the next several days, three independent shipments will be made, each entailing two
transfers. Obtain a 99 percent prediction interval for the mean number of ampules broken in
the three shipments. Convert this interval into a 99 percent prediction interval for the total
number of ampules broken in the three shipments.

d. Determine the boundary values of the 99 percent confidence band for the regression line
when Xh = 2 and when Xh = 4. Is your confidence band wider at these two points than the
corresponding confidence intervals in part (a)? Should it be?

2.16. Refer to Plastic hardness Problem 1.22.

a. Obtain a 98 percent confidence interval for the mean hardness of molded items with an
elapsed time of 30 hours. Interpret your confidence interval.

b. Obtain a 98 percent prediction interval for the hardness of a newly molded test item with
an elapsed time of 30 hours.

c. Obtain a 98 percent prediction interval for the mean hardness of 10 newly molded test items,
each with an elapsed time of 30 hours.

d. Is the prediction interval in part (c) narrower than the one in part (b)? Should it be?

e. Determine the boundary values of the 98 percent confidence band for the regression line
when Xh = 30. Is your confidence band wider at this point than the confidence interval in
part (a)? Should it be?

2.17. An analyst fitted normal error regression model (2.1) and conducted an F test of β1 = 0 versus
β1 �= 0. The P-value of the test was .033, and the analyst concluded Ha : β1 �= 0. Was the α

level used by the analyst greater than or smaller than .033? If the α level had been .01, what
would have been the appropriate conclusion?

2.18. For conducting statistical tests concerning the parameter β1, why is the t test more versatile
than the F test?

2.19. When testing whether or not β1 = 0, why is the F test a one-sided test even though Ha includes
both β1 < 0 and β1 > 0? [Hint: Refer to (2.57).]

2.20. A student asks whether R2 is a point estimator of any parameter in the normal error regression
model (2.1). Respond.

2.21. A value of R2 near 1 is sometimes interpreted to imply that the relation between Y and X is
sufficiently close so that suitably precise predictions of Y can be made from knowledge of X .
Is this implication a necessary consequence of the definition of R2?

2.22. Using the normal error regression model (2.1) in an engineering safety experiment, a researcher
found for the first 10 cases that R2 was zero. Is it possible that for the complete set of 30 cases
R2 will not be zero? Could R2 not be zero for the first 10 cases, yet equal zero for all 30 cases?
Explain.
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2.23. Refer to Grade point average Problem 1.19.

a. Set up the ANOVA table.

b. What is estimated by MSR in your ANOVA table? by MSE? Under what condition do MSR
and MSE estimate the same quantity?

c. Conduct an F test of whether or not β1 = 0. Control the α risk at .01. State the alternatives,
decision rule, and conclusion.

d. What is the absolute magnitude of the reduction in the variation of Y when X is introduced
into the regression model? What is the relative reduction? What is the name of the latter
measure?

e. Obtain r and attach the appropriate sign.

f. Which measure, R2 or r , has the more clear-cut operational interpretation? Explain.

*2.24. Refer to Copier maintenance Problem 1.20.

a. Set up the basic ANOVA table in the format of Table 2.2. Which elements of your table are ad-
ditive? Also set up the ANOVA table in the format of Table 2.3. How do the two tables differ?

b. Conduct an F test to determine whether or not there is a linear association between time
spent and number of copiers serviced; use α = .10. State the alternatives, decision rule, and
conclusion.

c. By how much, relatively, is the total variation in number of minutes spent on a call reduced
when the number of copiers serviced is introduced into the analysis? Is this a relatively small
or large reduction? What is the name of this measure?

d. Calculate r and attach the appropriate sign.

e. Which measure, r or R2, has the more clear-cut operational interpretation?

*2.25. Refer to Airfreight breakage Problem 1.21.

a. Set up the ANOVA table. Which elements are additive?

b. Conduct an F test to decide whether or not there is a linear association between the number
of times a carton is transferred and the number of broken ampules; control the α risk at .05.
State the alternatives, decision rule, and conclusion.

c. Obtain the t∗ statistic for the test in part (b) and demonstrate numerically its equivalence to
the F∗ statistic obtained in part (b).

d. Calculate R2 and r . What proportion of the variation in Y is accounted for by introducing
X into the regression model?

2.26. Refer to Plastic hardness Problem 1.22.

a. Set up the ANOVA table.

b. Test by means of an F test whether or not there is a linear association between the hardness
of the plastic and the elapsed time. Use α = .01. State the alternatives, decision rule, and
conclusion.

c. Plot the deviations Yi − Ŷi against Xi on a graph. Plot the deviations Ŷi − Ȳ against Xi

on another graph, using the same scales as for the first graph. From your two graphs, does
SSE or SSR appear to be the larger component of SSTO? What does this imply about the
magnitude of R2?

d. Calculate R2 and r .

*2.27. Refer to Muscle mass Problem 1.27.

a. Conduct a test to decide whether or not there is a negative linear association between amount
of muscle mass and age. Control the risk of Type I error at .05. State the alternatives, decision
rule, and conclusion. What is the P-value of the test?
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b. The two-sided P-value for the test whether β0 = 0 is 0+. Can it now be concluded
that b0 provides relevant information on the amount of muscle mass at birth for a female
child?

c. Estimate with a 95 percent confidence interval the difference in expected muscle mass for
women whose ages differ by one year. Why is it not necessary to know the specific ages to
make this estimate?

*2.28. Refer to Muscle mass Problem 1.27.

a. Obtain a 95 percent confidence interval for the mean muscle mass for women of age 60.
Interpret your confidence interval.

b. Obtain a 95 percent prediction interval for the muscle mass of a woman whose age is 60. Is
the prediction interval relatively precise?

c. Determine the boundary values of the 95 percent confidence band for the regression line
when Xh = 60. Is your confidence band wider at this point than the confidence interval in
part (a)? Should it be?

*2.29. Refer to Muscle mass Problem 1.27.

a. Plot the deviations Yi − Ŷi against Xi on one graph. Plot the deviations Ŷi − Ȳ against Xi

on another graph, using the same scales as in the first graph. From your two graphs, does
SSE or SSR appear to be the larger component of SSTO? What does this imply about the
magnitude of R2?

b. Set up the ANOVA table.

c. Test whether or not β1 = 0 using an F test with α = .05. State the alternatives, decision
rule, and conclusion.

d. What proportion of the total variation in muscle mass remains “unexplained” when age is
introduced into the analysis? Is this proportion relatively small or large?

e. Obtain R2 and r .

2.30. Refer to Crime rate Problem 1.28.

a. Test whether or not there is a linear association between crime rate and percentage of high
school graduates, using a t test with α = .01. State the alternatives, decision rule, and
conclusion. What is the P-value of the test?

b. Estimate β1 with a 99 percent confidence interval. Interpret your interval estimate.

2.31. Refer to Crime rate Problem 1.28

a. Set up the ANOVA table.

b. Carry out the test in Problem 2.30a by means of the F test. Show the numerical equivalence
of the two test statistics and decision rules. Is the P-value for the F test the same as that for
the t test?

c. By how much is the total variation in crime rate reduced when percentage of high school
graduates is introduced into the analysis? Is this a relatively large or small reduction?

d. Obtain r .

2.32. Refer to Crime rate Problems 1.28 and 2.30. Suppose that the test in Problem 2.30a is to be
carried out by means of a general linear test.

a. State the full and reduced models.

b. Obtain (1) SSE(F), (2) SSE(R), (3) dfF , (4) dfR, (5) test statistic F∗ for the general linear
test, (6) decision rule.

c. Are the test statistic F∗ and the decision rule for the general linear test numerically equivalent
to those in Problem 2.30a?
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2.33. In developing empirically a cost function from observed data on a complex chemical experiment,
an analyst employed normal error regression model (2.1). β0 was interpreted here as the cost
of setting up the experiment. The analyst hypothesized that this cost should be $7.5 thousand
and wished to test the hypothesis by means of a general linear test.

a. Indicate the alternative conclusions for the test.

b. Specify the full and reduced models.

c. Without additional information, can you tell what the quantity dfR −dfF in test statistic (2.70)
will equal in the analyst’s test? Explain.

2.34. Refer to Grade point average Problem 1.19.

a. Would it be more reasonable to consider the Xi as known constants or as random variables
here? Explain.

b. If the Xi were considered to be random variables, would this have any effect on prediction
intervals for new applicants? Explain.

2.35. Refer to Copier maintenance Problems 1.20 and 2.5. How would the meaning of the confidence
coefficient in Problem 2.5a change if the predictor variable were considered a random variable
and the conditions on page 83 were applicable?

2.36. A management trainee in a production department wished to study the relation between weight
of rough casting and machining time to produce the finished block. The trainee selected castings
so that the weights would be spaced equally apart in the sample and then observed the corre-
sponding machining times. Would you recommend that a regression or a correlation model be
used? Explain.

2.37. A social scientist stated: “The conditions for the bivariate normal distribution are so rarely met
in my experience that I feel much safer using a regression model.” Comment.

2.38. A student was investigating from a large sample whether variables Y1 and Y2 follow a bivariate
normal distribution. The student obtained the residuals when regressing Y1 on Y2, and also
obtained the residuals when regressing Y2 on Y1, and then prepared a normal probability plot
for each set of residuals. Do these two normal probability plots provide sufficient information
for determining whether the two variables follow a bivariate normal distribution? Explain.

2.39. For the bivariate normal distribution with parameters µ1 = 50, µ2 = 100, σ1 = 3, σ2 = 4, and
ρ12 = .80.

a. State the characteristics of the marginal distribution of Y1.

b. State the characteristics of the conditional distribution of Y2 when Y1 = 55.

c. State the characteristics of the conditional distribution of Y1 when Y2 = 95.

2.40. Explain whether any of the following would be affected if the bivariate normal model (2.74)
were employed instead of the normal error regression model (2.1) with fixed levels of the
predictor variable: (1) point estimates of the regression coefficients, (2) confidence limits for
the regression coefficients, (3) interpretation of the confidence coefficient.

2.41. Refer to Plastic hardness Problem 1.22. A student was analyzing these data and received the
following standard query from the interactive regression and correlation computer package:
CALCULATE CONFIDENCE INTERVAL FOR POPULATION CORRELATION COEFFI-
CIENT RHO? ANSWER Y OR N. Would a “yes” response lead to meaningful information
here? Explain.

*2.42. Property assessments. The data that follow show assessed value for property tax purposes
(Y1, in thousand dollars) and sales price (Y2, in thousand dollars) for a sample of 15 parcels
of land for industrial development sold recently in “arm’s length” transactions in a tax district.
Assume that bivariate normal model (2.74) is appropriate here.
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i : 1 2 3 . . . 13 14 15

Yi 1: 13.9 16.0 10.3 . . . 14.9 12.9 15.8
Yi 2: 28.6 34.7 21.0 . . . 35.1 30.0 36.2

a. Plot the data in a scatter diagram. Does the bivariate normal model appear to be appropriate
here? Discuss.

b. Calculate r12. What parameter is estimated by r12? What is the interpretation of this
parameter?

c. Test whether or not Y1 and Y2 are statistically independent in the population, using test statis-
tic (2.87) and level of significance .01. State the alternatives, decision rule, and conclusion.

d. To test ρ12 = .6 versus ρ12 �= .6, would it be appropriate to use test statistic (2.87)?

2.43. Contract profitability. A cost analyst for a drilling and blasting contractor examined 84 con-
tracts handled in the last two years and found that the coefficient of correlation between value
of contract (Y1) and profit contribution generated by the contract (Y2) is r12 = .61. Assume
that bivariate normal model (2.74) applies.

a. Test whether or not Y1 and Y2 are statistically independent in the population; use α = .05.
State the alternatives, decision rule, and conclusion.

b. Estimate ρ12 with a 95 percent confidence interval.

c. Convert the confidence interval in part (b) to a 95 percent confidence interval for ρ2
12. Interpret

this interval estimate.

*2.44. Bid preparation. A building construction consultant studied the relationship between cost of
bid preparation (Y1) and amount of bid (Y2) for the consulting firm’s clients. In a sample of
103 bids prepared by clients, r12 = .87. Assume that bivariate normal model (2.74) applies.

a. Test whether or not ρ12 = 0; control the risk of Type I error at .10. State the alternatives,
decision rule, and conclusion. What would be the implication if ρ12 = 0?

b. Obtain a 90 percent confidence interval for ρ12. Interpret this interval estimate.

c. Convert the confidence interval in part (b) to a 90 percent confidence interval for ρ2
12.

2.45. Water flow. An engineer, desiring to estimate the coefficient of correlation ρ12 between rate
of water flow at point A in a stream (Y1) and concurrent rate of flow at point B (Y2), obtained
r12 = .83 in a sample of 147 cases. Assume that bivariate normal model (2.74) is appropriate.

a. Obtain a 99 percent confidence interval for ρ12.

b. Convert the confidence interval in part (a) to a 99 percent confidence interval for ρ2
12.

2.46. Refer to Property assessments Problem 2.42. There is some question as to whether or not
bivariate model (2.74) is appropriate.

a. Obtain the Spearman rank correlation coefficient rS .

b. Test by means of the Spearman rank correlation coefficient whether an association exists
between property assessments and sales prices using test statistic (2.101) with α = .01.
State the alternatives, decision rule, and conclusion.

c. How do your estimates and conclusions in parts (a) and (b) compare to those obtained in
Problem 2.42?

*2.47. Refer to Muscle mass Problem 1.27. Assume that the normal bivariate model (2.74) is
appropriate.

a. Compute the Pearson product-moment correlation coefficient r12.

b. Test whether muscle mass and age are statistically independent in the population; use
α = .05. State the alternatives, decision rule, and conclusion.
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c. The bivariate normal model (2.74) assumption is possibly inappropriate here. Compute the
Spearman rank correlation coefficient, rS .

d. Repeat part (b), this time basing the test of independence on the Spearman rank correlation
computed in part (c) and test statistic (2.101). Use α = .05. State the alternatives, decision
rule, and conclusion.

e. How do your estimates and conclusions in parts (a) and (b) compare to those obtained in
parts (c) and (d)?

2.48. Refer to Crime rate Problems 1.28, 2.30, and 2.31. Assume that the normal bivariate model
(2.74) is appropriate.

a. Compute the Pearson product-moment correlation coefficient r12.

b. Test whether crime rate and percentage of high school graduates are statistically independent
in the population; use α = .01. State the alternatives, decision rule, and conclusion.

c. How do your estimates and conclusions in parts (a) and (b) compare to those obtained in
2.31b and 2.30a, respectively?

2.49. Refer to Crime rate Problems 1.28 and 2.48. The bivariate normal model (2.74) assumption
is possibly inappropriate here.

a. Compute the Spearman rank correlation coefficient rS .

b. Test by means of the Spearman rank correlation coefficient whether an association exists
between crime rate and percentage of high school graduates using test statistic (2.101) and
a level of significance .01. State the alternatives, decision rule, and conclusion.

c. How do your estimates and conclusions in parts (a) and (b) compare to those obtained in
Problems 2.48a and 2.48b, respectively?

Exercises 2.50. Derive the property in (2.6) for the ki .

2.51. Show that b0 as defined in (2.21) is an unbiased estimator of β0.

2.52. Derive the expression in (2.22b) for the variance of b0, making use of (2.31). Also explain how
variance (2.22b) is a special case of variance (2.29b).

2.53. (Calculus needed.)

a. Obtain the likelihood function for the sample observations Y1, . . . , Yn given X1, . . . , Xn , if
the conditions on page 83 apply.

b. Obtain the maximum likelihood estimators of β0, β1, and σ 2. Are the estimators of β0 and
β1 the same as those in (1.27) when the Xi are fixed?

2.54. Suppose that normal error regression model (2.1) is applicable except that the error variance
is not constant; rather the variance is larger, the larger is X . Does β1 = 0 still imply that there
is no linear association between X and Y ? That there is no association between X and Y ?
Explain.

2.55. Derive the expression for SSR in (2.51).

2.56. In a small-scale regression study, five observations on Y were obtained corresponding to X = 1,
4, 10, 11, and 14. Assume that σ = .6, β0 = 5, and β1 = 3.

a. What are the expected values of MSR and MSE here?

b. For determining whether or not a regression relation exists, would it have been better or
worse to have made the five observations at X = 6, 7, 8, 9, and 10? Why? Would the
same answer apply if the principal purpose were to estimate the mean response for X = 8?
Discuss.
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2.57. The normal error regression model (2.1) is assumed to be applicable.

a. When testing H0: β1 = 5 versus Ha : β1 �= 5 by means of a general linear test, what is the
reduced model? What are the degrees of freedom dfR?

b. When testing H0: β0 = 2, β1 = 5 versus Ha : not both β0 = 2 and β1 = 5 by means of a
general linear test, what is the reduced model? What are the degrees of freedom dfR?

2.58. The random variables Y1 and Y2 follow the bivariate normal distribution in (2.74). Show that if
ρ12 = 0, Y1 and Y2 are independent random variables.

2.59. (Calculus needed.)

a. Obtain the maximum likelihood estimators of the parameters of the bivariate normal distri-
bution in (2.74).

b. Using the results in part (a), obtain the maximum likelihood estimators of the parameters of
the conditional probability distribution of Y1 for any value of Y2 in (2.80).

c. Show that the maximum likelihood estimators of α1|2 and β12 obtained in part (b) are the
same as the least squares estimators (1.10) for the regression coefficients in the simple linear
regression model.

2.60. Show that test statistics (2.17) and (2.87) are equivalent.

2.61. Show that the ratio SSR/SSTO is the same whether Y1 is regressed on Y2 or Y2 is regressed on
Y1. [Hint: Use (1.10a) and (2.51).]

Projects 2.62. Refer to the CDI data set in Appendix C.2 and Project 1.43. Using R2 as the criterion, which
predictor variable accounts for the largest reduction in the variability in the number of active
physicians?

2.63. Refer to the CDI data set in Appendix C.2 and Project 1.44. Obtain a separate interval estimate
of β1 for each region. Use a 90 percent confidence coefficient in each case. Do the regression
lines for the different regions appear to have similar slopes?

2.64. Refer to the SENIC data set in Appendix C.1 and Project 1.45. Using R2 as the criterion, which
predictor variable accounts for the largest reduction in the variability of the average length of
stay?

2.65. Refer to the SENIC data set in Appendix C.1 and Project 1.46. Obtain a separate interval
estimate of β1 for each region. Use a 95 percent confidence coefficient in each case. Do the
regression lines for the different regions appear to have similar slopes?

2.66. Five observations on Y are to be taken when X = 4, 8, 12, 16, and 20, respectively. The true
regression function is E{Y } = 20 + 4X , and the εi are independent N (0, 25).

a. Generate five normal random numbers, with mean 0 and variance 25. Consider these random
numbers as the error terms for the five Y observations at X = 4, 8, 12, 16, and 20 and calculate
Y1, Y2, Y3, Y4, and Y5. Obtain the least squares estimates b0 and b1 when fitting a straight
line to the five cases. Also calculate Ŷh when Xh = 10 and obtain a 95 percent confidence
interval for E{Yh} when Xh = 10.

b. Repeat part (a) 200 times, generating new random numbers each time.

c. Make a frequency distribution of the 200 estimates b1. Calculate the mean and standard
deviation of the 200 estimates b1. Are the results consistent with theoretical expectations?

d. What proportion of the 200 confidence intervals for E{Yh} when Xh = 10 include E{Yh}?
Is this result consistent with theoretical expectations?
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2.67. Refer to Grade point average Problem 1.19.

a. Plot the data, with the least squares regression line for ACT scores between 20 and 30
superimposed.

b. On the plot in part (a), superimpose a plot of the 95 percent confidence band for the true
regression line for ACT scores between 20 and 30. Does the confidence band suggest that
the true regression relation has been precisely estimated? Discuss.

2.68. Refer to Copier maintenance Problem 1.20.

a. Plot the data, with the least squares regression line for numbers of copiers serviced between
1 and 8 superimposed.

b. On the plot in part (a), superimpose a plot of the 90 percent confidence band for the true
regression line for numbers of copiers serviced between 1 and 8. Does the confidence band
suggest that the true regression relation has been precisely estimated? Discuss.


