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The linear regression models considered up to this point are generally satisfactory approxi-
mations for most regression applications. There are occasions, however, when an empirically
indicated or a theoretically justified nonlinear regression model is more appropriate. For
example, growth from birth to maturity in human subjects typically is nonlinear in nature,
characterized by rapid growth shortly after birth, pronounced growth during puberty, and
a leveling off sometime before adulthood. In another example, dose-response relationships
tend to be nonlinear with little or no change in response for low dose levels of a drug, fol-
lowed by rapid S-shaped changes occurring in the more active dose region, and finally with
dose response leveling off as it reaches a saturated level. We shall consider in this chapter
and the next some nonlinear regression models, how to obtain estimates of the regression
parameters in such models, and how to make inferences about these regression parameters.

In this chapter, we introduce exponential nonlinear regression models and present the
basic methods of nonlinear regression. We also introduce neural network models, which are
now widely used in data mining applications. In Chapter 14, we present logistic regression
models and consider their uses when the response variable is binary or categorical with
more than two levels.

13.1 Linear and Nonlinear Regression Models

Linear Regression Models
In previous chapters, we considered linear regression models, i.e., models that are linear in
the parameters. Such models can be represented by the general linear regression model (6.7):

Yi = β0 + β1 Xi1 + β2 Xi2 + · · · + βp−1 Xi,p−1 + εi (13.1)

Linear regression models, as we have seen, include not only first-order models in p − 1
predictor variables but also more complex models. For instance, a polynomial regression
model in one or more predictor variables is linear in the parameters, such as the following
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model in two predictor variables with linear, quadratic, and interaction terms:

Yi = β0 + β1 Xi1 + β2 X 2
i1 + β3 Xi2 + β4 X 2

i2 + β5 Xi1 Xi2 + εi (13.2)

Also, models with transformed variables that are linear in the parameters belong to the class
of linear regression models, such as the following model:

log10 Yi = β0 + β1

√
Xi1 + β2 exp(Xi2) + εi (13.3)

In general, we can state a linear regression model in the form:

Yi = f (Xi , β) + εi (13.4)

where Xi is the vector of the observations on the predictor variables for the i th case:

Xi =




1
Xi1
...

Xi,p−1


 (13.4a)

β is the vector of the regression coefficients in (6.18c), and f (Xi , β) represents the expected
value E{Yi }, which for linear regression models equals according to (6.54):

f (Xi , β) = X′
iβ (13.4b)

Nonlinear Regression Models
Nonlinear regression models are of the same basic form as that in (13.4) for linear regression
models:

Yi = f (Xi , γ) + εi (13.5)

An observation Yi is still the sum of a mean response f (Xi , γ) given by the nonlinear
response function f (X, γ) and the error term εi . The error terms usually are assumed to
have expectation zero, constant variance, and to be uncorrelated, just as for linear regression
models. Often, a normal error model is utilized which assumes that the error terms are
independent normal random variables with constant variance.

The parameter vector in the response function f (X, γ) is now denoted by γ rather than
β as a reminder that the response function here is nonlinear in the parameters. We present
now two examples of nonlinear regression models that are widely used in practice.

Exponential Regression Models. One widely used nonlinear regression model is the
exponential regression model. When there is only a single predictor variable, one form of
this regression model with normal error terms is:

Yi = γ0 exp(γ1 Xi ) + εi (13.6)

where:

γ0 and γ1 are parameters

Xi are known constants

εi are independent N (0, σ 2)
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The response function for this model is:

f (X, γ) = γ0 exp(γ1 X) (13.7)

Note that this model is not linear in the parameters γ0 and γ1.
A more general nonlinear exponential regression model in one predictor variable with

normal error terms is:

Yi = γ0 + γ1 exp(γ2 Xi ) + εi (13.8)

where the error terms are independent normal with constant variance σ 2. The response
function for this regression model is:

f (X, γ) = γ0 + γ1 exp(γ2 X) (13.9)

Exponential regression model (13.8) is commonly used in growth studies where the rate
of growth at a given time X is proportional to the amount of growth remaining as time
increases, with γ0 representing the maximum growth value. Another use of this regression
model is to relate the concentration of a substance (Y ) to elapsed time (X). Figure 13.1a
shows the response function (13.9) for parameter values γ0 = 100, γ1 = −50, and γ2 = −2.
We shall discuss exponential regression models (13.6) and (13.8) in more detail later in this
chapter.

Logistic Regression Models. Another important nonlinear regression model is the logis-
tic regression model. This model with one predictor variable and normal error terms is:

Yi = γ0

1 + γ1 exp(γ2 Xi )
+ εi (13.10)

where the error terms εi are independent normal with constant variance σ 2. The response
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function here is:

f (X, γ) = γ0

1 + γ1 exp(γ2 X)
(13.11)

Note again that this response function is not linear in the parameters γ0, γ1, and γ2.
This logistic regression model has been used in population studies to relate, for instance,

number of species (Y ) to time (X). Figure 13.1b shows the logistic response function (13.11)
for parameter values γ0 = 10, γ1 = 20, and γ2 = −2. Note that the parameter γ0 = 10
represents the maximum growth value here.

Logistic regression model (13.10) is also widely used when the response variable is
qualitative. An example of this use of the logistic regression model is predicting whether
a household will purchase a new car this year (will, will not) on the basis of the predictor
variables age of presently owned car, household income, and size of household. In this
use of logistic regression models, the response variable (will, will not purchase car, in our
example) is qualitative and will be represented by a 0, 1 indicator variable. Consequently,
the error terms are not normally distributed here with constant variance. Logistic regression
models and their use when the response variable is qualitative will be discussed in detail in
Chapter 14.

General Form of Nonlinear Regression Models. As we have seen from the two examples
of nonlinear regression models, these models are similar in general form to linear regression
models. Each Yi observation is postulated to be the sum of a mean response f (Xi , γ) based
on the given nonlinear response function and a random error term εi . Furthermore, the
error terms εi are often assumed to be independent normal random variables with constant
variance.

An important difference of nonlinear regression models is that the number of regression
parameters is not necessarily directly related to the number of X variables in the model.
In linear regression models, if there are p − 1 X variables in the model, then there are
p regression coefficients in the model. For the exponential regression model in (13.8), there
is one X variable but three regression coefficients. The same is found for logistic regression
model (13.10). Hence, we now denote the number of X variables in the nonlinear regression
model by q , but we continue to denote the number of regression parameters in the response
function by p. In the exponential regression model (13.6), for instance, there are p = 2
regression parameters and q = 1 X variable.

Also, we shall define the vector Xi of the observations on the X variables without the
initial element 1. The general form of a nonlinear regression model is therefore expressed
as follows:

Yi = f (Xi , γ) + εi (13.12)

where:

Xi
q×1

=




Xi1

Xi2
...

Xiq


 γ

p×1
=




γ0

γ1
...

γp−1


 (13.12a)
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Comment
Nonlinear response functions that can be linearized by a transformation are sometimes called intrin-
sically linear response functions. For example, the exponential response function:

f (X, γ) = γ0[exp(γ1 X)]

is an intrinsically linear response function because it can be linearized by the logarithmic
transformation:

loge f (X, γ) = loge γ0 + γ1 X

This transformed response function can be represented in the linear model form:

g(X, γ) = β0 + β1 X

where g(X, γ) = loge f (X, γ), β0 = loge γ0, and β1 = γ1.
Just because a nonlinear response function is intrinsically linear does not necessarily imply that

linear regression is appropriate. The reason is that the transformation to linearize the response function
will affect the error term in the model. For example, suppose that the following exponential regression
model with normal error terms that have constant variance is appropriate:

Yi = γ0 exp(γ1 Xi ) + εi

A logarithmic transformation of Y to linearize the response function will affect the normal error term
εi so that the error term in the linearized model will no longer be normal with constant variance. Hence,
it is important to study any nonlinear regression model that has been linearized for appropriateness;
it may turn out that the nonlinear regression model is preferable to the linearized version.

Estimation of Regression Parameters
Estimation of the parameters of a nonlinear regression model is usually carried out by the
method of least squares or the method of maximum likelihood, just as for linear regres-
sion models. Also as in linear regression, both of these methods of estimation yield the
same parameter estimates when the error terms in nonlinear regression model (13.12) are
independent normal with constant variance.

Unlike linear regression, it is usually not possible to find analytical expressions for
the least squares and maximum likelihood estimators for nonlinear regression models.
Instead, numerical search procedures must be used with both of these estimation procedures,
requiring intensive computations. The analysis of nonlinear regression models is therefore
usually carried out by utilizing standard computer software programs.

Example To illustrate the fitting and analysis of nonlinear regression models in a simple fashion,
we shall use an example where the model has only two parameters and the sample size
is reasonably small. In so doing, we shall be able to explain the concepts and procedures
without overwhelming the reader with details.

A hospital administrator wished to develop a regression model for predicting the de-
gree of long-term recovery after discharge from the hospital for severely injured patients.
The predictor variable to be utilized is number of days of hospitalization (X), and the
response variable is a prognostic index for long-term recovery (Y ), with large values of
the index reflecting a good prognosis. Data for 15 patients were studied and are presented
in Table 13.1. A scatter plot of the data is shown in Figure 13.2. Related earlier studies
reported in the literature found the relationship between the predictor variable and the re-
sponse variable to be exponential. Hence, it was decided to investigate the appropriateness
of the two-parameter nonlinear exponential regression model (13.6):

Yi = γ0 exp(γ1 Xi ) + εi (13.13)
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TABLE 13.1
Data—Severely
Injured
Patients
Example.

Days Prognostic
Patient Hospitalized Index

i Xi Yi

1 2 54
2 5 50
3 7 45
4 10 37
5 14 35
6 19 25
7 26 20
8 31 16
9 34 18

10 38 13
11 45 8
12 52 11
13 53 8
14 60 4
15 65 6

FIGURE 13.2
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where the εi are independent normal with constant variance. If this model is appropriate, it
is desired to estimate the regression parameters γ0 and γ1.

13.2 Least Squares Estimation in Nonlinear Regression
We noted in Chapter 1 that the method of least squares for simple linear regression requires
the minimization of the criterion Q in (1.8):

Q =
n∑

i=1

[Yi − (β0 + β1 Xi )]
2 (13.14)
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Those values of β0 and β1 that minimize Q for the given sample observations (Xi , Yi ) are
the least squares estimates and are denoted by b0 and b1.

We also noted in Chapter 1 that one method for finding the least squares estimates is
by use of a numerical search procedure. With this approach, Q in (13.14) is evaluated for
different values of β0 and β1, varying β0 and β1 systematically until the minimum value of Q
is found. The values of β0 and β1 that minimize Q are the least squares estimates b0 and b1.

A second method for finding the least squares estimates is by means of the least squares
normal equations. Here, the least squares normal equations are found analytically by differ-
entiating Q with respect to β0 and β1 and setting the derivatives equal to zero. The solution
of the normal equations yields the least squares estimates.

As we saw in Chapter 6, these procedures extend directly to multiple linear regression, for
which the least squares criterion is given in (6.22). The concepts of least squares estimation
for linear regression also extend directly to nonlinear regression models. The least squares
criterion again is:

Q =
n∑

i=1

[Yi − f (Xi , γ)]2 (13.15)

where f (Xi , γ) is the mean response for the i th case according to the nonlinear response
function f (X, γ). The least squares criterion Q in (13.15) must be minimized with respect
to the nonlinear regression parameters γ0, γ1, . . . , γp−1 to obtain the least squares estimates.
The same two methods for finding the least squares estimates—numerical search and normal
equations—may be used in nonlinear regression. A difference from linear regression is that
the solution of the normal equations usually requires an iterative numerical search procedure
because analytical solutions generally cannot be found.

Example The response function in the severely injured patients example is seen from (13.13) to be:

f (X, γ) = γ0 exp(γ1 X)

Hence, the least squares criterion Q here is:

Q =
n∑

i=1

[Yi − γ0 exp(γ1 Xi )]
2

We can see that the method of maximum likelihood leads to the same criterion here
when the error terms εi are independent normal with constant variance by considering the
likelihood function:

L(γ, σ 2) = 1

(2πσ 2)n/2
exp

[
− 1

2σ 2

n∑
i=1

[Yi − γ0 exp(γ1 Xi )]
2

]

Just as for linear regression, maximizing this likelihood function with respect to the regres-
sion parameters γ0 and γ1 is equivalent to minimizing the sum in the exponent, so that the
maximum likelihood estimates are the same here as the least squares estimates.

We now discuss how to obtain the least squares estimates, first by use of the normal
equations and then by direct numerical search procedures.
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Solution of Normal Equations
To obtain the normal equations for a nonlinear regression model:

Yi = f (Xi , γ) + εi

we need to minimize the least squares criterion Q:

Q =
n∑

i=1

[Yi − f (Xi , γ)]2

with respect to γ0, γ1, . . . , γp−1. The partial derivative of Q with respect to γk is:

∂ Q

∂γk
=

n∑
i=1

−2[Yi − f (Xi , γ)]

[
∂ f (Xi , γ)

∂γk

]
(13.16)

When the p partial derivatives are each set equal to 0 and the parameters γk are replaced by
the least squares estimates gk , we obtain after some simplification the p normal equations:

n∑
i=1

Yi

[
∂ f (Xi , γ)

∂γk

]
γ=g

−
n∑

i=1

f (Xi , g)

[
∂ f (Xi , γ)

∂γk

]
γ=g

= 0 k = 0, 1, . . . , p − 1

(13.17)

where g is the vector of the least squares estimates gk :

g
p×1

=




g0

g1
...

gp−1


 (13.18)

Note that the terms in brackets in (13.17) are the partial derivatives in (13.16) with the
parameters γk replaced by the least squares estimates gk .

The normal equations (13.17) for nonlinear regression models are nonlinear in the pa-
rameter estimates gk and are usually difficult to solve, even in the simplest of cases. Hence,
numerical search procedures are ordinarily required to obtain a solution of the normal equa-
tions iteratively. To make things still more difficult, multiple solutions may be possible.

Example In the severely injured patients example, the mean response for the i th case is:

f (Xi , γ) = γ0 exp(γ1 Xi ) (13.19)

Hence, the partial derivatives of f (Xi , γ) are:

∂ f (Xi , γ)

∂γ0
= exp(γ1 Xi ) (13.20a)

∂ f (Xi , γ)

∂γ1
= γ0 Xi exp(γ1 Xi ) (13.20b)
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Replacing γ0 and γ1 in (13.19), (13.20a), and (13.20b) by the respective least squares
estimates g0 and g1, the normal equations (13.17) therefore are:∑

Yi exp(g1 Xi ) −
∑

g0 exp(g1 Xi ) exp(g1 Xi ) = 0∑
Yi g0 Xi exp(g1 Xi ) −

∑
g0 exp(g1 Xi )g0 Xi exp(g1 Xi ) = 0

Upon simplification, the normal equations become:∑
Yi exp(g1 Xi ) − g0

∑
exp(2g1 Xi ) = 0∑

Yi Xi exp(g1 Xi ) − g0

∑
Xi exp(2g1 Xi ) = 0

These normal equations are not linear in g0 and g1, and no closed-form solution exists.
Thus, numerical methods will be required to find the solution for the least squares estimates
iteratively.

Direct Numerical Search—Gauss-Newton Method
In many nonlinear regression problems, it is more practical to find the least squares estimates
by direct numerical search procedures rather than by first obtaining the normal equations
and then using numerical methods to find the solution for these equations iteratively. The
major statistical computer packages employ one or more direct numerical search procedures
for solving nonlinear regression problems. We now explain one of these direct numerical
search methods.

The Gauss-Newton method, also called the linearization method, uses a Taylor series
expansion to approximate the nonlinear regression model with linear terms and then employs
ordinary least squares to estimate the parameters. Iteration of these steps generally leads to
a solution to the nonlinear regression problem.

The Gauss-Newton method begins with initial or starting values for the regression
parameters γ0, γ1, . . . , γp−1. We denote these by g(0)

0 , g(0)
1 , . . . , g(0)

p−1, where the superscript
in parentheses denotes the iteration number. The starting values g(0)

k may be obtained from
previous or related studies, theoretical expectations, or a preliminary search for parameter
values that lead to a comparatively low criterion value Q in (13.15). We shall later discuss
in more detail the choice of the starting values.

Once the starting values for the parameters have been obtained, we approximate the
mean responses f (Xi , γ) for the n cases by the linear terms in the Taylor series expansion
around the starting values g(0)

k . We obtain for the i th case:

f (Xi , γ) ≈ f
(
Xi , g(0)

) +
p−1∑
k=0

[
∂ f (Xi , γ)

∂γk

]
γ=g(0)

(
γk − g(0)

k

)
(13.21)

where:

g(0)

p×1
=




g(0)
0

g(0)
1
...

g(0)
p−1


 (13.21a)
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Note that g(0) is the vector of the parameter starting values. The terms in brackets in (13.21)
are the same partial derivatives of the regression function we encountered earlier in the
normal equations (13.17), but here they are evaluated at γk = g(0)

k for k = 0, 1, . . . , p − 1.
Let us now simplify the notation as follows:

f (0)
i = f

(
Xi , g(0)

)
(13.22a)

β
(0)
k = γk − g(0)

k (13.22b)

D(0)
ik =

[
∂ f (Xi , γ)

∂γk

]
γ=g(0)

(13.22c)

The Taylor approximation (13.21) for the mean response for the i th case then becomes in
this notation:

f (Xi , γ) ≈ f (0)
i +

p−1∑
k=0

D(0)
ik β

(0)
k

and an approximation to the nonlinear regression model (13.12):

Yi = f (Xi , γ) + εi

is:

Yi ≈ f (0)
i +

p−1∑
k=0

D(0)
ik β

(0)
k + εi (13.23)

When we shift the f (0)
i term to the left and denote the difference Yi − f (0)

i by Y (0)
i , we obtain

the following linear regression model approximation:

Y (0)
i ≈

p−1∑
k=0

D(0)
ik β

(0)
k + εi i = 1, . . . , n (13.24)

where:

Y (0)
i = Yi − f (0)

i (13.24a)

Note that the linear regression model approximation (13.24) is of the form:

Yi = β0 Xi0 + β1 Xi1 + · · · + βp−1 Xi,p−1 + εi

The responses Y (0)
i in (13.24) are residuals, namely, the deviations of the observations

around the nonlinear regression function with the parameters replaced by the starting esti-
mates. The X variables observations D(0)

ik are the partial derivatives of the mean response
evaluated for each of the n cases with the parameters replaced by the starting estimates.
Each regression coefficient β

(0)
k represents the difference between the true regression pa-

rameter and the initial estimate of the parameter. Thus, the regression coefficients represent
the adjustment amounts by which the initial regression coefficients must be corrected. The
purpose of fitting the linear regression model approximation (13.24) is therefore to estimate
the regression coefficients β

(0)
k and use these estimates to adjust the initial starting estimates

of the regression parameters. In fitting this linear regression approximation, note that there
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is no intercept term in the model. Use of a computer multiple regression package therefore
requires a specification of no intercept.

We shall represent the linear regression model approximation (13.24) in matrix form as
follows:

Y(0) ≈ D(0)β(0) + ε (13.25)

where:

(13.25a) Y(0)

n×1
=




Y1 − f (0)
1

...

Yn − f (0)
n


 (13.25b) D(0)

n×p
=




D(0)
10 · · · D(0)

1,p−1
...

...

D(0)
n0 · · · D(0)

n,p−1




(13.25c) β(0)

p×1
=




β
(0)
0
...

β
(0)
p−1


 (13.25d) ε

n×1
=




ε1
...

εn




Note again that the approximation model (13.25) is precisely in the form of the general
linear regression model (6.19), with the D matrix of partial derivatives now playing the role
of the X matrix (but without a column of 1s for the intercept). We can therefore estimate
the parameters β(0) by ordinary least squares and obtain according to (6.25):

b(0) = (
D(0)′D(0)

)−1
D(0)′Y(0) (13.26)

where b(0) is the vector of the least squares estimated regression coefficients. As we noted
earlier, an ordinary multiple regression computer program can be used to obtain the estimated
regression coefficients b(0)

k , with a specification of no intercept.
We then use these least squares estimates to obtain revised estimated regression coeffi-

cients g(1)
k by means of (13.22b):

g(1)
k = g(0)

k + b(0)
k

where g(1)
k denotes the revised estimate of γk at the end of the first iteration. In matrix form,

we represent the revision process as follows:

g(1) = g(0) + b(0) (13.27)

At this point, we can examine whether the revised regression coefficients represent
adjustments in the proper direction. We shall denote the least squares criterion measure Q
in (13.15) evaluated for the starting regression coefficients g(0) by SSE (0); it is:

SSE (0) =
n∑

i=1

[
Yi − f

(
Xi , g(0)

)]2 =
n∑

i=1

(
Yi − f (0)

i

)2 (13.28)

At the end of the first iteration, the revised estimated regression coefficients are g(1), and
the least squares criterion measure evaluated at this stage, now denoted by SSE (1), is:

SSE (1) =
n∑

i=1

[
Yi − f

(
Xi , g(1)

)]2 =
n∑

i=1

(
Yi − f (1)

i

)2 (13.29)
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If the Gauss-Newton method is working effectively in the first iteration, SSE (1) should be
smaller than SSE (0) since the revised estimated regression coefficients g(1) should be better
estimates.

Note that the nonlinear regression functions f (Xi , g(0)) and f (Xi , g(1)) are used in
calculating SSE (0) and SSE (1), and not the linear approximations from the Taylor series
expansion.

The revised regression coefficients g(1) are not, of course, the least squares estimates for
the nonlinear regression problem because the fitted model (13.25) is only an approximation
of the nonlinear model. The Gauss-Newton method therefore repeats the procedure just
described, with g(1) now used for the new starting values. This produces a new set of
revised estimates, denoted by g(2), and a new least squares criterion measure SSE (2). The
iterative process is continued until the differences between successive coefficient estimates
g(s+1) − g(s) and/or the difference between successive least squares criterion measures
SSE (s+1) − SSE (s) become negligible. We shall denote the final estimates of the regression
coefficients simply by g and the final least squares criterion measure, which is the error sum
of squares, by SSE.

The Gauss-Newton method works effectively in many nonlinear regression applications.
In some instances, however, the method may require numerous iterations before converging,
and in a few cases it may not converge at all.

Example In the severely injured patients example, the initial values of the parameters γ0 and γ1

were obtained by noting that a logarithmic transformation of the response function lin-
earizes it:

loge γ0[exp(γ1 X)] = loge γ0 + γ1 X

Hence, a linear regression model with a transformed Y variable was fitted as an initial
approximation to the exponential model:

Y ′
i = β0 + β1 Xi + εi

where:

Y ′
i = loge Yi

β0 = loge γ0

β1 = γ1

This linear regression model was fitted by ordinary least squares and yielded the estimated
regression coefficients b0 = 4.0371 and b1 = −.03797 (calculations not shown). Hence,
the initial starting values are g(0)

0 = exp(b0) = exp(4.0371) = 56.6646 and g(0)
1 = b1 =

− .03797.
The least squares criterion measure at this stage requires evaluation of the nonlinear

regression function (13.7) for each case, utilizing the starting parameter values g(0)
0 and

g(0)
1 . For instance, for the first case, for which X1 = 2, we obtain:

f
(
X1, g(0)

) = f (0)
1 = g(0)

0 exp
(
g(0)

1 X1

) = (56.6646) exp[−.03797(2)] = 52.5208
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TABLE 13.2
Y(0) and D(0)

Matrices—
Severely
Injured
Patients
Example.

Y(0)

15×1
=




Y1 − f (0)
1

·
·
·

Y15 − f (0)
15




=




Y1 − g(0)
0 exp(g(0)

1 X1)

·
·
·

Y15 − g(0)
0 exp(g(0)

1 X15)




=




1.4792
3.1337
1.5609

−1.7624
1.6996

−2.5422
−1.1139
−1.4629

2.4172
− .3871
−2.2625

3.1327
.4259

−1.8063
1.1977




D(0)

15×2
=




exp(g(0)
1 X1) g(0)

0 X1 exp(g(0)
1 X1)

· ·
· ·
· ·

exp(g(0)
1 X15) g(0)

0 X15 exp(g(0)
1 X15)




=




.92687 105.0416

.82708 234.3317

.76660 304.0736

.68407 387.6236

.58768 466.2057

.48606 523.3020

.37261 548.9603

.30818 541.3505

.27500 529.8162

.23625 508.7088

.18111 461.8140

.13884 409.0975

.13367 401.4294

.10247 348.3801

.08475 312.1510




Since Y1 = 54, the deviation from the mean response is:

Y (0)
1 = Y1 − f (0)

1 = 54 − 52.5208 = 1.4792

Note again that the deviation Y (0)
1 is the residual for case 1 at the initial fitting stage

since f (0)
1 is the estimated mean response when the initial estimates g(0) of the parameters

are employed. The stage 0 residuals for this and the other sample cases are presented in
Table 13.2 and constitute the Y(0) vector.

The least squares criterion measure at this initial stage then is simply the sum of the
squared stage 0 residuals:

SSE (0) =
∑ (

Yi − f (0)
i

)2 =
∑ (

Y (0)
i

)2

= (1.4792)2 + · · · + (1.1977)2 = 56.0869
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To revise the initial estimates for the parameters, we require the D(0) matrix and the
Y(0) vector. The latter was already obtained in the process of calculating the least squares
criterion measure at stage 0. To obtain the D(0) matrix, we need the partial derivatives of the
regression function (13.19) evaluated at γ = g(0). The partial derivatives are given in (13.20).
Table 13.2 shows the D(0) matrix entries in symbolic form and also the numerical values.
To illustrate the calculations for case 1, we know from Table 13.1 that X1 = 2. Hence,
evaluating the partial derivatives at g(0), we find:

D(0)
10 =

[
∂ f (X1, γ)

∂γ0

]
γ=g(0)

= exp
(
g(0)

1 X1

) = exp[−.03797(2)] = .92687

D(0)
11 =

[
∂ f (X1, γ)

∂γ1

]
γ=g(0)

= g(0)
0 X1 exp

(
g(0)

1 X1

)
= 56.6646(2) exp[−.03797(2)] = 105.0416

We are now ready to obtain the least squares estimates b(0) by regressing the response
variable Y (0) in Table 13.2 on the two X variables in D(0) in Table 13.2, using regression
with no intercept. A standard multiple regression computer program yielded b(0)

0 = 1.8932
and b(0)

1 = −.001563. Hence, the vector b(0) of the estimated regression coefficients is:

b(0) =
[

1.8932
−.001563

]

By (13.27), we now obtain the revised least squares estimates g(1):

g(1) = g(0) + b(0) =
[

56.6646
−.03797

]
+

[
1.8932
−.001563

]
=

[
58.5578
−.03953

]

Hence, g(1)
0 = 58.5578 and g(1)

1 = −.03953 are the revised parameter estimates at the
end of the first iteration. Note that the estimated regression coefficients have been revised
moderately from the initial values, as can be seen from Table 13.3a, which presents the
estimated regression coefficients and the least squares criterion measures for the starting
values and the first iteration. Note also that the least squares criterion measure has been
reduced in the first iteration.

Iteration 2 requires that we now revise the residuals from the exponential regression func-
tion and the first partial derivatives, based on the revised parameter estimates g(1)

0 = 58.5578
and g(1)

1 = −.03953. For case 1, for which Y1 = 54 and X1 = 2, we obtain:

Y (1)
1 = Y1 − f (1)

1 = 54 − (58.5578) exp[−.03953(2)] = −.1065

D(1)
10 = exp

(
g(1)

1 X1

) = exp[−.03953(2)] = .92398

D(1)
11 = g(1)

0 X1 exp
(
g(1)

1 X1

) = 58.5578(2) exp[−.03953(2)] = 108.2130

By comparing these results with the comparable stage 0 results for case 1 in Table 13.2,
we see that the absolute magnitude of the residual for case 1 is substantially reduced as a
result of the stage 1 revised fit and that the two partial derivatives are changed to a moderate
extent. After the revised residuals Y (1)

i and the partial derivatives D(1)
i0 and D(1)

i1 have been
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TABLE 13.3
Gauss-Newton
Method
Iterations
and Final
Nonlinear
Least Squares
Estimates—
Severely
Injured
Patients
Example.

(a) Estimates of Parameters and Least Squares Criterion Measure

Iteration g0 g1 SSE

0 56.6646 −.03797 56.0869
1 58.5578 −.03953 49.4638
2 58.6065 −.03959 49.4593
3 58.6065 −.03959 49.4593

(b) Final Least Squares Estimates

k gk s{gk}
MSE = 49.4593

13
= 3.80456

0 58.6065 1.472
1 −.03959 .00171

(c) Estimated Approximate Variance-Covariance Matrix of
Estimated Regression Coefficients

s2{g} = MSE(D’D)−1 = 3.80456

[
5.696E−1 −4.682E−4

−4.682E−4 7.697E−7

]

=
[

2.1672 −1.781E−3
−1.781E−3 2.928E−6

]

obtained for all cases, the revised residuals are regressed on the revised partial derivatives,
using a no-intercept regression fit, and the estimated regression parameters are again revised
according to (13.27).

This process was carried out for three iterations. Table 13.3a contains the estimated
regression coefficients and the least squares criterion measure for each iteration. We see
that while iteration 1 led to moderate revisions in the estimated regression coefficients and
a substantially better fit according to the least squares criterion, iteration 2 resulted only in
minor revisions of the estimated regression coefficients and little improvement in the fit.
Iteration 3 led to no change in either the estimates of the coefficients or the least squares
criterion measure.

Hence, the search procedure was terminated after three iterations. The final regression
coefficient estimates therefore are g0 = 58.6065 and g1 = −.03959, and the fitted regression
function is:

Ŷ = (58.6065) exp(−.03959X) (13.30)

The error sum of squares for this fitted model is SSE = 49.4593. Figure 13.2 on page 515
shows a plot of this estimated regression function, together with a scatter plot of the data.
The fit appears to be a good one.

Comments
1. The choice of initial starting values is very important with the Gauss-Newton method because

a poor choice may result in slow convergence, convergence to a local minimum, or even divergence.
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Good starting values will generally result in faster convergence, and if multiple minima exist, will
lead to a solution that is the global minimum rather than a local minimum. Fast convergence, even if
the initial estimates are far from the least squares solution, generally indicates that the linear approxi-
mation model (13.25) is a good approximation to the nonlinear regression model. Slow convergence,
on the other hand, especially from initial estimates reasonably close to the least squares solution,
usually indicates that the linear approximation model is not a good approximation to the nonlinear
model.

2. A variety of methods are available for obtaining starting values for the regression parameters.
Often, related earlier studies can be utilized to provide good starting values for the regression parame-
ters. Another possibility is to select p representative observations, set the regression function f (Xi , γ)

equal to Yi for each of the p observations (thereby ignoring the random error), solve the p equations
for the p parameters, and use the solutions as the starting values, provided they lead to reasonably
good fits of the observed data. Still another possibility is to do a grid search in the parameter space
by selecting in a grid fashion various trial choices of g, evaluating the least squares criterion Q for
each of these choices, and using as the starting values that g vector for which Q is smallest.

3. When using the Gauss-Newton or another direct search procedure, it is often desirable to try
other sets of starting values after a solution has been obtained to make sure that the same solution will
be found.

4. Some computer packages for nonlinear regression require that the user specify the starting
values for the regression parameters. Others do a grid search to obtain starting values.

5. Most nonlinear computer programs have a library of commonly used regression functions.
For nonlinear response functions not in the library and specified by the user, some computer pro-
grams using the Gauss-Newton method require the user to input also the partial derivatives of the
regression function, while others numerically approximate partial derivatives from the regression
function.

6. The Gauss-Newton method may produce iterations that oscillate widely or result in increases
in the error sum of squares. Sometimes, these aberrations are only temporary, but occasionally serious
convergence problems exist. Various modifications of the Gauss-Newton method have been suggested
to improve its performance, such as the Hartley modification (Ref. 13.1).

7. Some properties that exist for linear regression least squares do not hold for nonlinear regression
least squares. For example, the residuals do not necessarily sum to zero for nonlinear least squares.
Additionally, the error sum of squares SSE and the regression sum of squares SSR do not necessar-
ily sum to the total sum of squares SSTO. Consequently, the coefficient of multiple determination
R2 = SSR/SSTO is not a meaningful descriptive statistic for nonlinear regression.

Other Direct Search Procedures
Two other direct search procedures, besides the Gauss-Newton method, that are frequently
used are the method of steepest descent and the Marquardt algorithm. The method of
steepest descent searches for the minimum least squares criterion measure Q by iteratively
determining the direction in which the regression coefficients g should be changed. The
method of steepest descent is particularly effective when the starting values g(0) are not
good, being far from the final values g.

The Marquardt algorithm seeks to utilize the best features of the Gauss-Newton method
and the method of steepest descent, and occupies a middle ground between these two
methods.

Additional information about direct search procedures can be found in specialized
sources, such as References 13.2 and 13.3.
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13.3 Model Building and Diagnostics
The model-building process for nonlinear regression models often differs somewhat from
that for linear regression models. The reason is that the functional form of many nonlinear
models is less suitable for adding or deleting predictor variables and curvature and interac-
tion effects in the direct fashion that is feasible for linear regression models. Some types of
nonlinear regression models do lend themselves to adding and deleting predictor variables
in a direct fashion. We shall take up two such nonlinear regression models in Chapter 14,
where we consider the logistic and Poisson multiple regression models.

Validation of the selected nonlinear regression model can be performed in the same
fashion as for linear regression models.

Use of diagnostic tools to examine the appropriateness of a fitted model plays an impor-
tant role in the process of building a nonlinear regression model. The appropriateness of a
regression model must always be considered, whether the model is linear or nonlinear. Non-
linear regression models may not be appropriate for the same reasons as linear regression
models. For example, when nonlinear growth models are used for time series data, there
is the possibility that the error terms may be correlated. Also, unequal error variances are
often present when nonlinear growth models with asymptotes are fitted, such as exponential
models (13.6) and (13.8). Typically, the error variances for cases in the neighborhood of
the asymptote(s) differ from the error variances for cases elsewhere.

When replicate observations are available and the sample size is reasonably large, the ap-
propriateness of a nonlinear regression function can be tested formally by means of the lack
of fit test for linear regression models in (6.68). This test will be an approximate one for non-
linear regression models, but the actual level of significance will be close to the specified level
when the sample size is reasonably large. Thus, we calculate the pure error sum of squares
by (3.16), obtain the lack of fit sum of squares by (3.24), and calculate test statistic (6.68b)
in the usual fashion when performing a formal lack of fit test for a nonlinear response
function.

Plots of residuals against time, against the fitted values, and against each of the predictor
variables can be helpful in diagnosing departures from the assumed model, just as for
linear regression models. In interpreting residual plots for nonlinear regression, one needs
to remember that the residuals for nonlinear regression do not necessarily sum to zero.

If unequal error variances are found to be present, weighted least squares can be used
in fitting the nonlinear regression model. Alternatively, transformations of the response
variable can be investigated that may stabilize the variance of the error terms and also
permit use of a linear regression model.

Example In the severely injured patients example, the residuals were obtained by use of the fitted
nonlinear regression function (13.30):

ei = Yi − (58.6065) exp(−.03959Xi )

A plot of the residuals against the fitted values is shown in Figure 13.3a, and a normal
probability plot of the residuals is shown in Figure 13.3b. These plots do not suggest any
serious departures from the model assumptions. The residual plot against the fitted values
in Figure 13.3a does raise the question whether the error variance may be somewhat larger
for cases with small fitted values near the asymptote. The Brown-Forsythe test (3.9) was
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FIGURE 13.3
Diagnostic
Residual
Plots—
Severely
Injured
Patients
Example.
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conducted. Its P-value is .64, indicating that the residuals are consistent with constancy of
the error variance.

On the basis of these, as well as some other diagnostics, it was concluded that exponential
regression model (13.13) is appropriate for the data.

13.4 Inferences about Nonlinear Regression Parameters
Exact inference procedures about the regression parameters are available for linear regres-
sion models with normal error terms for any sample size. Unfortunately, this is not the
case for nonlinear regression models with normal error terms, where the least squares and
maximum likelihood estimators for any given sample size are not normally distributed, are
not unbiased, and do not have minimum variance.

Consequently, inferences about the regression parameters in nonlinear regression are
usually based on large-sample theory. This theory tells us that the least squares and maximum
likelihood estimators for nonlinear regression models with normal error terms, when the
sample size is large, are approximately normally distributed and almost unbiased, and
have almost minimum variance. This large-sample theory also applies when the error terms
are not normally distributed.

Before presenting details about large-sample inferences for nonlinear regression, we
need to consider first how the error term variance σ 2 is estimated for nonlinear regression
models.

Estimate of Error Term Variance
Inferences about nonlinear regression parameters require an estimate of the error term
variance σ 2. This estimate is of the same form as for linear regression, the error sum of
squares again being the sum of the squared residuals:

MSE = SSE

n − p
=

∑
(Yi − Ŷi )

2

n − p
=

∑
[Yi − f (Xi , g)]2

n − p
(13.31)
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Here g is the vector of the final parameter estimates, so that the residuals are the deviations
around the fitted nonlinear regression function using the final estimated regression coeffi-
cients g. For nonlinear regression, MSE is not an unbiased estimator of σ 2, but the bias is
small when the sample size is large.

Large-Sample Theory
When the error terms are independent and normally distributed and the sample size is
reasonably large, the following theorem provides the basis for inferences for nonlinear
regression models:

When the error terms εi are independent N (0, σ 2) and the sample size n
is reasonably large, the sampling distribution of g is approximately (13.32)
normal. The expected value of the mean vector is approximately:

E{g} ≈ γ (13.32a)

The approximate variance-covariance matrix of the regression
coefficients is estimated by:

s2{g} = MSE(D′D)−1 (13.32b)

Here D is the matrix of partial derivatives evaluated at the final least squares estimates g,
just as D(0) in (13.25b) is the matrix of partial derivatives evaluated at g(0). Note that the
estimated approximate variance-covariance matrix s2{g} is of exactly the same form as the
one for linear regression in (6.48), with D again playing the role of the X matrix.

Thus, when the sample size is large and the error terms are independent normal with con-
stant variance, the least squares estimators in g for nonlinear regression are approximately
normally distributed and almost unbiased. They also have near minimum variance, since
the variance-covariance matrix in (13.32b) estimates the minimum variances. We should
add that theorem (13.32) holds even if the error terms are not normally distributed.

As a result of theorem (13.32), inferences for nonlinear regression parameters are carried
out in the same fashion as for linear regression when the sample size is reasonably large.
Thus, an interval estimate for a regression parameter is carried out by (6.50) and a test
by (6.51). The needed estimated variance is obtained from the matrix s2{g} in (13.32b).
These inference procedures when applied to nonlinear regression are only approximate, to
be sure, but the approximation often is very good. For some nonlinear regression models,
the sample size can be quite small for the large-sample approximation to be good. For other
nonlinear regression models, however, the sample size may need to be quite large.

When Is Large-Sample Theory Applicable?
Ideally, we would like a rule that would tell us when the sample size in any given nonlinear
regression application is large enough so that the large-sample inferences based on asymp-
totic theorem (13.32) are appropriate. Unfortunately, no simple rule exists that tells us when
it is appropriate to use the large-sample inference methods and when it is not appropriate.
However, a number of guidelines have been developed that are helpful in assessing the
appropriateness of using the large-sample inference procedures in a given application.

1. Quick convergence of the iterative procedure in finding the estimates of the nonlinear
regression parameters is often an indication that the linear approximation in (13.25) to
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the nonlinear regression model is a good approximation and hence that the asymptotic
properties of the regression estimates are applicable. Slow convergence suggests caution
and consideration of other guidelines before large-sample inferences are employed.

2. Several measures have been developed for providing guidance about the appropriate-
ness of the use of large-sample inference procedures. Bates and Watts (Ref. 13.4) devel-
oped curvature measures of nonlinearity. These indicate the extent to which the nonlinear
regression function fitted to the data can be reasonably approximated by the linear approx-
imation in (13.25). Box (Ref. 13.5) obtained a formula for estimating the bias of the esti-
mated regression coefficients. A small bias supports the appropriateness of the large-sample
inference procedures. Hougaard (Ref. 13.6) developed an estimate of the skewness of the
sampling distributions of the estimated regression coefficients. An indication of little skew-
ness supports the approximate normality of the sampling distributions and consequently the
applicability of the large-sample inference procedures.

3. Bootstrap sampling described in Chapter 11 provides a direct means of examining
whether the sampling distributions of the nonlinear regression parameter estimates are
approximately normal, whether the variances of the sampling distributions are near the
variances for the linear approximation model, and whether the bias in each of the parameter
estimates is fairly small. If so, the sampling behavior of the nonlinear regression estimates is
said to be close-to-linear and the large-sample inference procedures may appropriately be
used. Nonlinear regression estimates whose sampling distributions are not close to normal,
whose variances are much larger than the variances for the linear approximation model,
and for which there is substantial bias are said to behave in a far-from-linear fashion and
the large-sample inference procedures are then not appropriate.

Once many bootstrap samples have been obtained and the nonlinear regression parameter
estimates calculated for each sample, the bootstrap sampling distribution for each param-
eter estimate can be examined to see if it is near normal. The variances of the bootstrap
distributions of the estimated regression coefficients can be obtained next to see if they are
close to the large-sample variance estimates obtained by (13.32b). Similarly, the bootstrap
confidence intervals for the regression coefficients can be obtained and compared with the
large-sample confidence intervals. Good agreement between these intervals again provides
support for the appropriateness of the large-sample inference procedures. In addition, the
difference between each final regression parameter estimate and the mean of its bootstrap
sampling distribution is an estimate of the bias of the regression estimate. Small or negligible
biases of the nonlinear regression estimates support the appropriateness of the large-sample
inference procedures.

Remedial Measures. When the diagnostics suggest that large-sample inference proce-
dures are not appropriate in a particular instance, remedial measures should be explored.
One possibility is to reparameterize the nonlinear regression model. For example, studies
have shown that for the nonlinear model:

Yi = γ0 Xi/(γ1 + Xi ) + εi

the use of large-sample inference procedures is often not appropriate. However, the follow-
ing reparameterization:

Yi = Xi/(θ1 Xi + θ2) + εi
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where θ1 = 1/γ0 and θ2 = γ1/γ0, yields identical fits and generally involves no problems
in using large-sample inference procedures for moderate sample sizes (see Ref. 13.7 for
details).

Another remedial measure is to use the bootstrap estimates of precision and confidence
intervals instead of the large-sample inferences. However, when the linear approximation
in (13.25) is not a close approximation to the nonlinear regression model, convergence may
be very slow and bootstrap estimates of precision and confidence intervals may be difficult to
obtain. Still another remedial measure that is sometimes available is to increase the sample
size.

Example For the severely injured patients example, we know from Table 13.3a on page 524 that
the final error sum of squares is SSE = 49.4593. Since p = 2 parameters are present in the
nonlinear response function (13.19), we obtain:

MSE = SSE

n − p
= 49.4593

15 − 2
= 3.80456

Table 13.3b presents this mean square, and Table 13.3c contains the large-sample estimated
variance-covariance matrix of the estimated regression coefficients. The matrix (D′D)−1 is
based on the final regression coefficient estimates g and is shown without computational
details.

We see from Table 13.3c that s2{g0} = 2.1672 and s2{g1} = .000002928. The estimated
standard deviations of the regression coefficients are given in Table 13.3b.

To check on the appropriateness of the large-sample variances of the estimated regression
coefficients and on the applicability of large-sample inferences in general, we have generated
1,000 bootstrap samples of size 15. The fixed X sampling procedure was used since the
exponential model appears to fit the data well and the error term variance appears to be
fairly constant. Histograms of the resulting bootstrap sampling distributions of g∗

0 and g∗
1

are shown in Figure 13.4, together with some characteristics of these distributions. We see
that the g∗

0 distribution is close to normal. The g∗
1 distribution suggests that the sampling

distribution may be slightly skewed to the left, but the departure from normality does not
appear to be great. The means of the distribution, denoted by ḡ∗

0 and ḡ∗
1 , are very close to

the final least squares estimates, indicating that the bias in the estimates is negligible:

ḡ∗
0 = 58.67 ḡ∗

1 = −.03936

g0 = 58.61 g1 = −.03959

Furthermore, the standard deviations of the bootstrap sampling distributions are very close
to the large-sample standard deviations in Table 13.3b:

s∗{g∗
0} = 1.423 s∗{g∗

1} = .00142

s{g0} = 1.472 s{g1} = .00171

These indications all point to the appropriateness of large-sample inferences here, even
though the sample size (n = 15) is not very large.
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FIGURE 13.4 Bootstrap Sampling Distributions—Severely Injured Patients Example.
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Interval Estimation of a Single γ k

Based on large-sample theorem (13.32), the following approximate result holds when the
sample size is large and the error terms are normally distributed:

gk − γk

s{gk} ∼ t (n − p) k = 0, 1, . . . , p − 1 (13.33)

where t (n − p) is a t variable with n − p degrees of freedom. Hence, approximate 1 − α

confidence limits for any single γk are formed by means of (6.50):

gk ± t (1 − α/2; n − p)s{gk} (13.34)

where t (1 − α/2; n − p) is the (1 − α/2)100 percentile of the t distribution with n − p
degrees of freedom.

Example For the severely injured patients example, it is desired to estimate γ1 with a 95 percent
confidence interval. We require t (.975; 13) = 2.160, and find from Table 13.3b that g1 =
−.03959 and s{g1} = .00171. Hence, the confidence limits are −.03959 ± 2.160(.00171),
and the approximate 95 percent confidence interval for γ1 is:

−.0433 ≤ γ1 ≤ −.0359

Thus, we can conclude with approximate 95 percent confidence that γ1 is between −.0433
and −.0359. To confirm the appropriateness of this large-sample confidence interval, we
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shall obtain the 95 percent bootstrap confidence interval for γ1. Using (11.58) and the results
in Figure 13.4b, we obtain:

d1 = g1 − g∗
1(.025) = −.03959 + .04207 = .00248

d2 = g∗
1(.975) − g1 = −.03681 + .03959 = .00278

The reflection method confidence limits by (11.59) then are:

g1 − d2 = −.03959 − .00278 = −.04237

g1 + d1 = −.03959 + .00248 = −.03711

Hence, the 95 percent bootstrap confidence interval is −.0424 ≤ γ1 ≤ −.0371. This con-
fidence interval is very close to the large-sample confidence interval, again supporting the
appropriateness of large-sample inference procedures here.

Simultaneous Interval Estimation of Several γ k

Approximate joint confidence intervals for several regression parameters in nonlinear re-
gression can be developed by the Bonferroni procedure. If m parameters are to be estimated
with approximate family confidence coefficient 1 − α, the joint Bonferroni confidence
limits are:

gk ± Bs{gk} (13.35)

where:

B = t (1 − α/2m; n − p) (13.35a)

Example In the severely injured patients example, it is desired to obtain simultaneous interval es-
timates for γ0 and γ1 with an approximate 90 percent family confidence coefficient. With
the Bonferroni procedure we therefore require separate confidence intervals for the two
parameters, each with a 95 percent statement confidence coefficient. We have already ob-
tained a confidence interval for γ1 with a 95 percent statement confidence coefficient. The
approximate 95 percent statement confidence limits for γ0, using the results in Table 13.3b,
are 58.6065 ± 2.160(1.472) and the confidence interval for γ0 is:

55.43 ≤ γ0 ≤ 61.79

Hence, the joint confidence intervals with approximate family confidence coefficient of
90 percent are:

55.43 ≤ γ0 ≤ 61.79

−.0433 ≤ γ1 ≤ −.0359

Test Concerning a Single γ k

A large-sample test concerning a single γk is set up in the usual fashion. To test:

H0: γk = γk0

Ha: γk �= γk0
(13.36a)
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where γk0 is the specified value of γk , we may use the t∗ test statistic based on (6.49) when
n is reasonably large:

t∗ = gk − γk0

s{gk} (13.36b)

The decision rule for controlling the risk of making a Type I error at approximately α then is:

If |t∗| ≤ t (1 − α/2; n − p), conclude H0

If |t∗| > t (1 − α/2; n − p), conclude Ha
(13.36c)

Example In the severely injured patients example, we wish to test:

H0: γ0 = 54

Ha: γ0 �= 54

The test statistic (13.36b) here is:

t∗ = 58.6065 − 54

1.472
= 3.13

For α = .01, we require t (.995; 13) = 3.012. Since |t∗| = 3.13 > 3.012, we conclude Ha ,
that γ0 �= 54. The approximate two-sided P-value of the test is .008.

Test Concerning Several γ k

When a large-sample test concerning several γk simultaneously is desired, we use the same
approach as for the general linear test, first fitting the full model and obtaining SSE(F),
then fitting the reduced model and obtaining SSE(R), and finally calculating the same test
statistic (2.70) as for linear regression:

F∗ = SSE(R) − SSE(F)

dfR − dfF

÷ MSE(F) (13.37)

For large n, this test statistic is distributed approximately as F(dfR − dfF , dfF) when H0

holds.

13.5 Learning Curve Example
We now present a second example, to provide an additional illustration of the nonlin-
ear regression concepts developed in this chapter. An electronics products manufacturer
undertook the production of a new product in two locations (location A: coded X1 = 1,
location B: coded X1 = 0). Location B has more modern facilities and hence was expected
to be more efficient than location A, even after the initial learning period. An industrial en-
gineer calculated the expected unit production cost for a modern facility after learning has
occurred. Weekly unit production costs for each location were then expressed as a fraction
of this expected cost. The reciprocal of this fraction is a measure of relative efficiency, and
this relative efficiency measure was utilized as the response variable (Y ) in the study.

It is well known that efficiency increases over time when a new product is produced,
and that the improvements eventually slow down and the process stabilizes. Hence, it was
decided to employ an exponential model with an upper asymptote for expressing the relation
between relative efficiency (Y ) and time (X2), and to incorporate a constant effect for the
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difference in the two production locations. The model decided on was:

Yi = γ0 + γ1 Xi1 + γ3 exp(γ2 Xi2) + εi (13.38)

When γ2 and γ3 are negative, γ0 is the upper asymptote for location B as X2 gets large, and
γ0 + γ1 is the upper asymptote for location A. The parameters γ2 and γ3 reflect the speed
of learning, which was expected to be the same in the two locations.

While weekly data on relative production efficiency for each location were available, we
shall only use observations for selected weeks during the first 90 weeks of production to
simplify the presentation. A portion of the data on location, week, and relative efficiency is
presented in Table 13.4; a plot of the data is shown in Figure 13.5. Note that learning was
relatively rapid in both locations, and that the relative efficiency in location B toward the

TABLE 13.4
Data—
Learning
Curve
Example.

Observation Location Week Relative Efficiency
i Xi1 Xi2 Yi

1 1 1 .483
2 1 2 .539
3 1 3 .618

· · · · · · · · · · · ·
13 1 70 .960
14 1 80 .967
15 1 90 .975
16 0 1 .517
17 0 2 .598
18 0 3 .635
· · · · · · · · · · · ·
28 0 70 1.028
29 0 80 1.017
30 0 90 1.023

FIGURE 13.5
Scatter Plot
and Fitted
Nonlinear
Regression
Functions—
Learning
Curve
Example.
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end of the 90-week period even exceeded 1.0; i.e., the actual unit costs at this stage were
lower than the industrial engineer’s expected unit cost.

Regression model (13.38) is nonlinear in the parameters γ2 and γ3. Hence, a direct
numerical search estimation procedure was to be employed, for which starting values for
the parameters are needed. These were developed partly from past experience, partly from
analysis of the data. Previous studies indicated that γ3 should be in the neighborhood of −.5,
so g(0)

3 = −.5 was used as the starting value. Since the difference in the relative efficiencies
between locations A and B for a given week tended to average −.0459 during the 90-week
period, a starting value g(0)

1 = −.0459 was specified. The largest observed relative efficiency
for location B was 1.028, so that a starting value g(0)

0 = 1.025 was felt to be reasonable.
Only a starting value for γ2 remains to be found. This was chosen by selecting a typical
relative efficiency observation in the middle of the time period, Y24 = 1.012, and equating
it to the response function with X24,1 = 0, X24,2 = 30, and the starting values for the other
regression coefficients (thus ignoring the error term):

1.012 = 1.025 − (.5) exp(30γ2)

Solving this equation for γ2, the starting value g(0)
2 = −.122 was obtained. Tests for several

other representative observations yielded similar starting values, and g(0)
2 = −.122 was

therefore considered to be a reasonable initial value.
With the four starting values g(0)

0 = 1.025, g(0)
1 = −.0459, g(0)

2 = −.122, and g(0)
3 = −.5, a

computer package direct numerical search program was utilized to obtain the least squares
estimates. The least squares regression coefficients stabilized after five iterations. The final
estimates, together with the large-sample estimated standard deviations of their sampling
distributions, are presented in Table 13.5, columns 1 and 2. The fitted regression function is:

Ŷ = 1.0156 − .04727X1 − (.5524) exp(−.1348X2) (13.39)

The error sum of squares is SSE = .00329, with 30−4 = 26 degrees of freedom. Figure 13.5
presents the fitted regression functions for the two locations, together with a plot of the data.
The fit seems to be quite good, and residual plots (not shown) did not indicate any noticeable
departures from the assumed model.

In order to explore the applicability of large-sample inference procedures here, bootstrap
fixed X sampling was employed. One thousand bootstrap samples of size 30 were generated.

TABLE 13.5 Nonlinear Least Squares Estimates and Standard Deviations and Bootstrap
Results—Learning Curve Example.

(1) (2) (3) (4)
Nonlinear

Least Squares Bootstrap
k gk s{gk} ḡ∗

k s∗{g∗
k }

0 1.0156 .003672 1.015605 .003374
1 −.04727 .004109 −.04724 .003702
2 −.5524 .008157 −.55283 .007275
3 −.1348 .004359 −.13495 .004102
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FIGURE 13.6 MINITAB Histograms of Bootstrap Sampling Distributions—Learning Curve Example.
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The estimated bootstrap means and standard deviations for each of the sampling distributions
are presented in Table 13.5, columns 3 and 4. Note first that each least squares estimate
gk in column 1 of Table 13.5 is very close to the mean ḡ∗

k of its respective bootstrap
sampling distribution in column 3, indicating that the estimates have very little bias. Note
also that each large-sample standard deviation s{gk} in column 2 of Table 13.5 is fairly
close to the respective bootstrap standard deviation s∗{g∗

k } in column 4, again supporting the
applicability of large-sample inference procedures here. Finally, we present in Figure 13.6
MINITAB plots of the histograms of the four bootstrap sampling distributions. They appear
to be consistent with approximately normal sampling distributions. These results all indicate
that the sampling behavior of the nonlinear regression estimates is close to linear and
therefore support the use of large-sample inferences here.

There was special interest in the parameter γ1, which reflects the effect of location. An
approximate 95 percent confidence interval is to be constructed. We require t (.975;26)

= 2.056. The estimated standard deviation from Table 13.5 is s{g1} = .004109. Hence, the
approximate 95 percent confidence limits for γ1 are −.04727 ± 2.056(.004109), and the
confidence interval for γ1 is:

−.0557 ≤ γ1 ≤ −.0388

An approximate 95 percent confidence interval for γ1 by the bootstrap reflection method
was also obtained for comparative purposes using (11.59). It is:

−.0547 ≤ γ1 ≤ −.0400

This is very close to that obtained by large-sample inference procedures. Since γ1 is seen to
be negative, these confidence intervals confirm that location A with its less modern facilities
tends to be less efficient.

Comments
1. When learning curve models are fitted to data constituting repeated observations on the same

unit, such as efficiency data for the same production unit at different points in time, the error terms may
be correlated. Hence, in these situations it is important to ascertain whether or not a model assuming
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uncorrelated error terms is reasonable. In the learning curve example, a plot of the residuals against
time order did not suggest any serious correlations among the error terms.

2. With learning curve models, it is not uncommon to find that the error variances are unequal.
Again, therefore, it is important to check whether the assumption of constancy of error variance is
reasonable. In the learning curve example, plots of the residuals against the fitted values and time did
not suggest any serious heteroscedasticity problem.

13.6 Introduction to Neural Network Modeling
In recent years there has been an explosion in the amount of available data, made possible
in part by the widespread availability of low-cost computer memory and automated data
collection systems. The regression modeling techniques discussed to this point in this book
typically were developed for use with data sets involving fewer than 1,000 observations and
fewer than 50 predictors. Yet it is not uncommon now to be faced with data sets involving
perhaps millions of observations and hundreds or thousands of predictors. Examples include
point-of-sale data in marketing, credit card scoring data, on-line monitoring of production
processes, optical character recognition, internet e-mail filtering data, microchip array data,
and computerized medical record data. This exponential growth in available data has moti-
vated researchers in the fields of statistics, artificial intelligence, and data mining to develop
simple, flexible, powerful procedures for data modeling that can be applied to very large
data sets. In this section we discuss one such technique, neural network modeling.

Neural Network Model
The basic idea behind the neural network approach is to model the response as a nonlinear
function of various linear combinations of the predictors. Recall that our standard multi-
ple regression model (6.7) involves just one linear combination of the predictors, namely
E{Yi } = β0 + β1 Xi1 + · · · + βp−1 Xi,p−1. Thus, as we will demonstrate, the neural network
model is simply a nonlinear statistical model that contains many more parameters than the
corresponding linear statistical model. One result of this is that the models will typically
be overparameterized, resulting in parameters that are uninterpretable, which is a major
shortcoming of neural network modeling. An advantage of the neural network approach
is that the resulting model will often perform better in predicting future responses than a
standard regression model. Such models require large data sets, and are evaluated solely on
their ability to predict responses in hold-out (validation) data sets.

In this section we describe the simplest, but most widely used, neural network model,
the single-hidden-layer, feedforward neural network. This network is sometimes referred
to as a single-layer perceptron. In a neural network model the i th response Yi is modeled
as a nonlinear function gY of m derived predictor values, Hi0, Hi1, . . . , Hi,m−1:

Yi = gY (β0 Hi0 + β1 Hi1 + · · · + βi,m−1 Hi,m−1) + εi = gY (H′
iβ) + εi (13.40)

where:

β
m×1

=




β0

β1
...

βm−1


 Hi

m×1
=




Hi0

Hi1
...

Hi,m−1


 (13.40a)



538 Part Three Nonlinear Regression

We take Hi0 equal to 1 and for j = 1, . . . , p − 1, the j th derived predictor value for the i th
observation, Hi j , is a nonlinear function g j of a linear combination of the original predictors:

Hi j = g j (X′
iα j ) j = 1, . . . , m − 1 (13.41)

where:

α j
p×1

=




α j0

α j1
...

α j,p−1


 Xi

p×1
=




Xi0

Xi1
...

Xi,p−1


 (13.41a)

and where Xi0 = 1. Note that X′
i is the i th row of the X matrix. Equations (13.40) and

(13.41) together form the neural network model:

Yi = gY (H′
iβ) + εi = gY

[
β0 +

m−1∑
j=1

β j g j (X′
iα j )

]
+ εi (13.42)

The m functions gY , g1, . . . , gm−1 are called activation functions in the neural networks
literature. To completely specify the neural network model, it is necessary to identify the m
activation functions. A common choice for each of these functions is the logistic function:

g(Z) = 1

1 + e−Z
= [1 + e−Z ]−1 (13.43)

This function is flexible and can be adapted to a variety of circumstances.
As a simple example, consider the case of a single predictor, X1. Then from (13.41), the

j th derived predictor for the i th observation is:

g j (X′
iα j ) = [1 + exp(−α j0 − α j1 Xi1)]

−1 (13.44)

(Note that (13.44) is a reparameterization of (13.11), with γ0 = 1, γ1 = e−α j0 , and γ2 =
−α j1.) This function is shown in Figure 13.7 for various choices of α j0 and α j1. In Fig-
ure 13.7a, the logistic function is plotted for fixed α j0 = 0, and α j1 = .1, 1, and 10. When
α j1 = .1, the logistic function is approximately linear over a wide range; when α j1 = 10,
the function is highly nonlinear in the center of the plot. Generally, relatively larger param-
eters (in absolute value) are required for highly nonlinear responses, and relatively smaller
parameters result for approximately linear responses. Changing the sign of α j1 reverses the
orientation of the logistic function, as shown in Figure 13.7b. Finally, for a given value of
α j1, the position of the logistic function along the X1-axis is controlled by α j0. In Figure
13.7c, the logistic function is plotted for fixed α j1 = 1 and α j0 = − 5, 0, and 5. Note that
all of the plots in Figure 13.7 reflect a characteristic S- or sigmoidal-shape, and the fact that
the logistic function has a maximum of 1 and a minimum of 0.

Substitution of g in (13.43) for each of gY , g1, . . . , gm−1 in (13.42) yields the specific
neural network model to be discussed in this section:

Yi = [1 + exp(−H′
iβ)]−1 + εi

=
[

1 + exp

[
− β0 −

m−1∑
j=1

β j [1 + exp(−X′
iα j )]

−1

]]−1

+ εi

= f (Xi , α1, . . . , αm−1, β) + εi (13.45)
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FIGURE 13.7 Various Logistic Activation Functions for Single Predictor.
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where:

β, α1, . . . ,αm−1 are unknown parameter vectors

Xi is a vector of known constants

εi are residuals

Neural network model (13.45) is a special case of (13.12) and is therefore a nonlinear
regression model. In principle, all of the methods discussed in this chapter for estimation,
testing, and prediction with nonlinear models are applicable. Indeed, any nonlinear regres-
sion package can be used to estimate the unknown coefficients. Recall, however, that these
models are generally overparameterized, and use of standard estimation methods will result
in fitted models that have poor predictive ability. This is analogous to leaving too many
unimportant predictors in a linear regression model. Special procedures for fitting model
(13.45) that lead to better prediction will be considered later in this section.
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Note that because the logistic activation function is bounded between 0 and 1, it is
necessary to scale Yi so that the scaled value, Y sc

i also falls within these limits. This can be
accomplished by using:

Y sc
i = Yi − Ymin

Ymax − Ymin

where Ymin and Ymax are the minimum and maximum responses. It is also common practice
to center and scale each of the predictors to have mean 0 and standard deviation 1. These
transformations are generally handled automatically by neural network software.

Network Representation
Network diagrams are often used to depict a neural network model. Note that the standard
linear regression function:

E{Y } = β0 + β1 X1 + · · · + βp−1 X p−1

can be represented as a network as shown in Figure 13.8a. The link from each predictor Xi

to the response is labeled with the corresponding regression parameter, βi .
The feedforward, single-hidden-layer neural network model (13.45) is shown in Fig-

ure 13.8b. The predictor nodes are labeled X0, X1, . . . , X p−1 and are located on the left
side of the diagram. In the center of the diagram are m hidden nodes. These nodes are
linked to the p predictor nodes by relation (13.41); thus the links are labeled by using the
α parameters. Finally, the hidden nodes are linked to the response Y by the β parameters.

Comments
1. Neural networks were first used as models for the human brain. The nodes represented neurons

and the links between neurons represented synapses. A synapse would “fire” if the signal surpassed

FIGURE 13.8
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a threshold. This suggested the use of step functions for the activation function, which were later
replaced by smooth functions such as the logistic function.

2. The logistic activation function is sometimes replaced by a radial basis function, which is an
n-dimensional normal probability density function. Details are provided in Reference 13.8.

Neural Network as Generalization of Linear Regression
It is easy to see that the standard multiple regression model is a special case of neural
network model (13.45). If we choose for each of the activation functions gY , g1, . . . , gm−1

the identity activation:

g(Z) = Z

we have:

E{Yi } = β0 + β1 Hi1 + · · · + βm−1 Hi,m−1 (13.46a)

and:

Hi j = α j0 + α j1 Xi1 + · · · + α j,p−1 Xi,p−1 (13.46b)

Substitution of (13.46b) into (13.46a) and rearranging yields:

E{Yi } =
[
β0 +

m−1∑
j=1

β jα j0

]
+

[
m−1∑
j=1

β jα j1

]
Xi1 + · · · +

[
m−1∑
j=1

β jα j,p−1

]
Xi,p−1

= β∗
0 + β∗

1 Xi1 + · · · + β∗
p−1 Xi,p−1 (13.47)

where:

β∗
0 = β0 +

m−1∑
j=1

β jα j0

(13.47a)

β∗
k =

m−1∑
j=1

β jα jk for k = 1, . . . , p − 1

The neural network with identity activation functions thus reduces to the standard linear
regression model.

There is a problem, however, with the interpretation of the neural network regression
coefficients. If the regression function is given by E{Yi } = β∗

0 +β∗
1 Xi1 + · · ·+β∗

p Xi,p−1 as
indicated in (13.47), then any set of neural network parameters satisfying the p equations in
(13.47a) gives the correct model. Since there are many more neural network parameters than
there are equations (or equivalently, β∗ parameters) there are infinitely many sets of neural
network parameters that lead to the correct model. Thus, any particular set of neural network
parameters will have no intrinsic meaning in this case.

This overparameterization problem is somewhat reduced with the use of the logistic
activation function in place of the identity function. Generally, however, if the number of
hidden nodes is more than just a few, overparameterization will be present, and will lead to
a fitted model with low predictive ability unless this issue is explicitly considered when the
parameters are estimated. We now take up such estimation procedures.
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Parameter Estimation: Penalized Least Squares
In Chapter 9 we considered model selection and validation. There, we observed that while R2

never decreases with the addition of a new predictor, our ability to predict holdout responses
in the validation stage can deteriorate if too many predictors are incorporated. Various model
selection criteria, such as R2

a,p, SBCp, and AICp, have been adopted that contain penalties for
the addition of predictors. We commented in Section 11.2 that ridge regression estimates
can be obtained by the method of penalized least squares, which directly incorporates a
penalty for the sum of squares of the regression coefficients. In order to control the level of
overfitting, penalized least squares is frequently used for parameter estimation with neural
networks.

The penalized least squares criterion is given by:

Q =
n∑

i=1

[Yi − f (Xi , β, α1, . . . ,αm−1]2 + pλ(β, α1, . . . ,αm−1) (13.48)

where the overfit penalty is:

pλ(β, α1, . . . ,αm−1) = λ

[
m−1∑
i=0

β2
i +

m−1∑
i=1

p−1∑
j=0

α2
i j

]
(13.48a)

Thus, the penalty is a positive constant, λ, times the sum of squares of the nonlinear regres-
sion coefficients. Note that the penalty is imposed not on the number of parameters m +mp,
but on the total magnitude of the parameters. The penalty weight λ assigned to the regres-
sion coefficients governs the trade-off between overfitting and underfitting. If λ is large,
the parameters estimates will be relatively small in absolute magnitude; if λ is small, the
estimates will be relatively large. A “best” value for λ is generally between .001 and .1 and
is chosen by cross-validation. For example, we may fit the model for a range of λ-values
between .001 and .1, and choose the value that minimizes the total prediction error of the
hold-out sample. The resulting parameter estimates are called shrinkage estimates because
use of λ > 0 leads to reductions in their absolute magnitudes.

In Section 13.3 we described various search procedures, such as the Gauss-Newton
method for finding nonlinear least squares estimates. Such methods can also be used with
neural networks and penalized least squares criterion (13.48). We observed in Comment 1 on
page 524, that the choice of starting values is important. Poor choice of starting values may
lead to convergence to a local minimum (rather than the global minimum) when multiple
minima exist. The problem of multiple minima is especially prevalent when fitting neural
networks, due to the typically large numbers of parameters and the functional form of model
(13.48). For this reason, it is common practice to fit the model many times (typically between
10 and 50 times) using different sets of randomly chosen starting values for each fit. The set
of parameter estimates that leads to the lowest value of criterion function (13.48)—i.e., the
best of the best—is chosen for further study. In the neural networks literature, finding a set
of parameter values that minimize criterion (13.48) is referred to as training the network.
The number of searches conducted before arriving at the final estimates is referred to as the
number of tours.
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Comment
Neural networks are often trained by a procedure called back-propagation. Back propagation is in
fact the method of steepest descent, which can be very slow. Recommended methods include the
conjugate gradient and variable metric methods. Reference 13.8 provides further details concerning
back-propagation and other search procedures.

Example: Ischemic Heart Disease
We illustrate the use of neural network model (13.44) and the penalized least squares fitting
procedure using the Ischemic heart disease data set in Appendix C.9. These data were
collected by a health insurance plan and provide information concerning 788 subscribers
who made claims resulting from coronary heart disease. The response (Y ) is the natural
logarithm of the total cost of services provided and the predictors to be studied here are:

Predictor Description

X1: Number of interventions, or procedures, carried out
X2: Number of tracked drugs used
X3: Number of comorbidities—other conditions present

that complicate the treatment
X4: Number of complications—other conditions that

arose during treatment due to heart disease

The first 400 observations are used to fit model (13.45) and the last n∗ = 388 observations
were held out for validation. (Note that the observations were originally sorted in a random
order, so that the hold-out data set is a random sample.) We used JMP to fit and evaluate
the neural network model.

Shown in Figure 13.9 is the JMP control panel, which allows the user to specify the var-
ious characteristics of the model and the fitting procedure. Here, we have chosen 5 hidden
nodes, and we are using λ = .05 as the penalty weight. Also, we have chosen the default val-
ues for the number of tours (20), the maximum number of iterations for the search procedure

FIGURE 13.9
JMP Control
Panel for
Neural
Network
Fit—Ischemic
Heart Disease
Example.
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FIGURE 13.10
JMP Neural
Network
Diagram—
Ischemic Heart
Disease
Example.
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(50) and the convergence criterion (.00001). By checking the “log the tours” box, we will
be keeping a record of the results of each of the 20 tours. A JMP network representation of
model (13.45) is shown in Figure 13.10. Note that this representation excludes the constant
nodes X0 and H0. In our notation, there are m = 6 hidden nodes and p = 5 predictor nodes,
and it is necessary to estimate m + p(m − 1) = 6 + 5(6 − 1) = 31 parameters.

The results of the best fit, after 20 attempts or tours, is shown in Figure 13.11. The
penalized least squares criterion value is 125.31. SSE for the scaled response is 120.90.
JMP indicates that the corresponding SSE for the unscaled (original) responses is 441.30.
The total prediction error for the validation (excluded) data, is given here by:

SSEVAL =
788∑

i=401

(Yi − Ŷi )
2 = 407.68

The mean squared prediction error (9.20) is obtained as MSPR = SSEVAL/n∗ = 407.68/

388 = 1.05. JMP also gives R2 for the training data (.6962), and for the validation data
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FIGURE 13.12
JMP
Parameter
Estimates for
Neural
Network
Fit—Ischemic
Heart Disease
Example.

(.7024). This latter diagnostic was obtained using:

R2
VAL = 1 − SSEVAL

SSTVAL

where SSTVAL is the total sum of squares for the validation data. Because these R2 values
are approximately equal, we conclude that the use of weight penalty λ = .05 led to a good
balance between underfitting and overfitting.

Figure 13.12 shows the 31 parameter estimates produced by JMP and the corresponding
parameters. We display these values only for completeness–we make no attempt at inter-
pretation. As noted earlier, our interest is centered on the prediction of future responses.

For comparison, two least squares regressions of Y on the four predictors X1, X2, X3,
and X4 were also carried out. The first was based on a first-order model consisting of the
four predictors and an intercept term; the second was based on a full second-order model
consisting of an intercept plus the four linear terms, the four quadratic terms, and the six
cross-products among the four predictors. The results for these two multiple regression
models and the neural network model are summarized in the Table 13.6.

From the results, we see that the neural network model’s ability to predict holdout
responses is superior to the first-order multiple regression and slightly better that the second-
order multiple regression model. MSPR for the neural network is 1.05, whereas this statistic
for the first and second-order multiple regression models is 1.28 and 1.09, respectively.
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TABLE 13.6
Comparisons
of Results for
Neural
Network Model
with Multiple
Linear
Regression
Model—
Ischemic Heart
Disease
Example.

Multiple Linear Regression

Neural Network First-Order Second-Order

Number of Parameters 31 5 15
MSE 1.20 1.74 1.34
MSPR 1.05 1.28 1.09

FIGURE 13.13
Conditional
Effects
Plot—Ischemic
Heart Disease
Example.
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Model Interpretation and Prediction
While individual parameters and derived predictors are usually not interpretable, some
understanding of the effects of individual predictors can be realized through the use of
conditional effects plots. For example, Figure 13.13 shows for the ischemic heart data
example, plots of predicted response as a function the number of interventions (X2) for
duration (X1) equal to 0 and 160. The remaining predictors, comorbidities (X3 = 3.55)
and complications (X4 = 0.05), are fixed at their averages for values in the training set.
The plot indicates that the natural logarithm of cost increases rapidly as the number of
interventions increases from 0 to 25, and then reaches a plateau and is stable as the number
of interventions increases from 25 to 50. The duration variable seems to have very little
effect, except possibly when interventions are between 5 and 10.

We have noted that neural network models can be very effective tools for prediction when
large data sets are available. As always, it is important that the uncertainty in any prediction
be quantified. Methods for producing approximate confidence intervals for estimation and
prediction have been developed and some packages such as JMP now provide these intervals.
Details are provided in Reference 13.9.
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Some Final Comments on Neural Network Modeling
In recent years, neural networks have found widespread application in many fields. Indeed,
they have become one of the standard tools in the field of data mining, and their use continues
to grow. This is due largely to the widespread availability of powerful computers that permit
the fitting of complex models having dozens, hundreds, and even thousands, of parameters.

A vocabulary has developed that is unique to the field of neural networks. The table below
(adapted from Ref. 13.10) lists a number of terms that are commonly used by statisticians
and their neural network equivalents:

Statistical Term Neural Network Term

coefficient weight
predictor input
response output
observation exemplar
parameter estimation training or learning
steepest descent back-propagation
intercept bias term
derived predictor hidden node
penalty function weight decay

There are a number of advantages to the neural network modeling approach. These
include:

1. Model (13.45) is extremely flexible, and can be used to represent a wide range of response
surface shapes. For example, with sufficient data, curvatures, interactions, plateaus, and
step functions can be effectively modeled.

2. Standard regression assumptions, such as the requirements that the true residuals are
mutually independent, normally distributed, and have constant variance, are not required
for neural network modeling.

3. Outliers in the response and predictors can still have a detrimental effect on the fit of the
model, but the use of the bounded logistic activation function tends to limit the influence
of individual cases in comparison with standard regression approaches.

Of course, there are disadvantages associated with the use of neural networks. Model
parameters are generally uninterpretable, and the method depends on the availability of
large data sets. Diagnostics, such as lack of fit tests, identification of influential observations
and outliers, and significance testing for the effects of the various predictors, are currently
not generally available.
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Problems *13.1. For each of the following response functions, indicate whether it is a linear response function,
an intrinsically linear response function, or a nonlinear response function. In the case of an in-
trinsically linear response function, state how it can be linearized by a suitable transformation:

a. f (X, γ) = exp(γ0 + γ1 X)

b. f (X, γ) = γ0 + γ1(γ2)
X1 − γ3 X2

c. f (X, γ) = γ0 + γ1

γ0
X

13.2. For each of the following response functions, indicate whether it is a linear response function,
an intrinsically linear response function, or a nonlinear response function. In the case of an in-
trinsically linear response function, state how it can be linearized by a suitable transformation:

a. f (X, γ) = exp(γ0 + γ1 loge X)

b. f (X, γ) = γ0(X1)
γ1(X2)

γ2

c. f (X, γ) = γ0 − γ1(γ2)
X

*13.3. a. Plot the logistic response function:

f (X, γ) = 300

1 + (30) exp(−1.5X)
X ≥ 0

b. What is the asymptote of this response function? For what value of X does the response
function reach 90 percent of its asymptote?

13.4. a. Plot the exponential response function:

f (X, γ) = 49 − (30) exp(−1.1X) X ≥ 0

b. What is the asymptote of this response function? For what value of X does the response
function reach 95 percent of its asymptote?

*13.5. Home computers. A computer manufacturer hired a market research firm to investigate the
relationship between the likelihood a family will purchase a home computer and the price of
the home computer. The data that follow are based on replicate surveys done in two similar
cities. One thousand heads of households in each city were randomly selected and asked if
they would be likely to purchase a home computer at a given price. Eight prices (X , in dollars)
were studied, and 100 heads of households in each city were randomly assigned to a given
price. The proportion likely to purchase at a given price is denoted by Y .
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City A

i : 1 2 3 4 5 6 7 8

Xi : 200 400 800 1200 1600 2000 3000 4000
Yi : .65 .46 .34 .26 .17 .15 .06 .04

City B

i : 9 10 11 12 13 14 15 16

Xi : 200 400 800 1200 1600 2000 3000 4000
Yi : .63 .50 .30 .24 .19 .12 .08 .05

No location effect is expected and the data are to be treated as independent replicates at each of
the 8 prices. The following exponential model with independent normal error terms is deemed
to be appropriate:

Yi = γ0 + γ2 exp(−γ1 Xi ) + εi

a. To obtain initial estimates of γ0, γ1, and γ2, note that f (X, γ) approaches a lower asymptote
γ0 as X increases without bound. Hence, let g(0)

0 = 0 and observe that when we ignore the
error term, a logarithmic transformation then yields Y ′

i = β0 + β1 Xi , where Y ′
i = loge Yi ,

β0 = loge γ2, and β1 = − γ1. Therefore, fit a linear regression function based on the trans-
formed data and use as initial estimates g(0)

0 = 0, g(0)
1 = −b1, and g(0)

2 = exp(b0).

b. Using the starting values obtained in part (a), find the least squares estimates of the param-
eters γ0, γ1, and γ2.

*13.6. Refer to Home computers Problem 13.5.

a. Plot the estimated nonlinear regression function and the data. Does the fit appear to be
adequate?

b. Obtain the residuals and plot them against the fitted values and against X on separate
graphs. Also obtain a normal probability plot. Does the model appear to be adequate?

*13.7. Refer to Home computers Problem 13.5. Assume that large-sample inferences are appropriate
here. Conduct a formal approximate test for lack of fit of the nonlinear regression function;
use α = .01. State the alternatives, decision rule, and conclusion.

*13.8. Refer to Home computers Problem 13.5. Assume that the fitted model is appropriate and
that large-sample inferences can be employed. Obtain approximate joint confidence intervals
for the parameters γ0, γ1, and γ2, using the Bonferroni procedure and a 90 percent family
confidence coefficient.

*13.9. Refer to Home computers Problem 13.5. A question has been raised whether the two cities
are similar enough so that the data can be considered to be replicates. Adding a location
effect parameter analogous to (13.38) to the model proposed in Problem 13.5 yields the four-
parameter nonlinear regression model:

Yi = γ0 + γ3 Xi2 + γ2 exp(−γ1 Xi1) + εi

where:

X2 =
{

0 if city A
1 if city B

a. Using the same starting values as those obtained in Problem 13.5a and g(0)
3 = 0, find the

least squares estimates of the parameters γ0, γ1, γ2, and γ3.

b. Assume that large-sample inferences can be employed reasonably here. Obtain an approx-
imate 95 percent confidence interval for γ3. What does this interval indicate about city
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differences? Is this result consistent with your conclusion in Problem 13.7? Does it have
to be? Discuss.

13.10. Enzyme kinetics. In an enzyme kinetics study the velocity of a reaction (Y ) is expected to be
related to the concentration (X) as follows:

Yi = γ0 Xi

γ1 + Xi
+ εi

Eighteen concentrations have been studied and the results follow:

i : 1 2 3 . . . 16 17 18

Xi : 1 1.5 2 . . . 30 35 40
Yi : 2.1 2.5 4.9 . . . 19.7 21.3 21.6

a. To obtain starting values for γ0 and γ1, observe that when the error term is ignored we have
Y ′

i = β0 + β1 X ′
i , where Y ′

i = 1/Yi , β0 = 1/γ0, β1 = γ1/γ0, and X ′
i = 1/Xi . Therefore fit

a linear regression function to the transformed data to obtain initial estimates g(0)
0 = 1/b0

and g(0)
1 = b1/b0.

b. Using the starting values obtained in part (a), find the least squares estimates of the param-
eters γ0 and γ1.

13.11. Refer to Enzyme kinetics Problem 13.10.

a. Plot the estimated nonlinear regression function and the data. Does the fit appear to be
adequate?

b. Obtain the residuals and plot them against the fitted values and against X on separate
graphs. Also obtain a normal probability plot. What do your plots show?

c. Can you conduct an approximate formal lack of fit test here? Explain.

d. Given that only 18 trials can be made, what are some advantages and disadvantages of con-
sidering fewer concentration levels but with some replications, as compared to considering
18 different concentration levels as was done here?

13.12. Refer to Enzyme kinetics Problem 13.10. Assume that the fitted model is appropriate and
that large-sample inferences can be employed here. (1) Obtain an approximate 95 percent
confidence interval for γ0. (2) Test whether or not γ1 = 20; use α = .05. State the alternatives,
decision rule, and conclusion.

*13.13. Drug responsiveness. A pharmacologist modeled the responsiveness to a drug using the
following nonlinear regression model:

Yi = γ0 − γ0

1 +
(

Xi

γ2

)γ1
+ εi

X denotes the dose level, in coded form, and Y the responsiveness expressed as a percent of
the maximum possible responsiveness. In the model, γ0 is the expected response at saturation,
γ2 is the concentration that produces a half-maximal response, and γ1 is related to the slope.
The data for 19 cases at 13 dose levels follow:

i : 1 2 3 . . . 17 18 19

Xi : 1 2 3 . . . 7 8 9
Yi : .5 2.3 3.4 . . . 94.8 96.2 96.4
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Obtain least squares estimates of the parameters γ0, γ1, and γ2, using starting values g(0)
0 =

100, g(0)
1 = 5, and g(0)

2 = 4.8.

*13.14. Refer to Drug responsiveness Problem 13.13.

a. Plot the estimated nonlinear regression function and the data. Does the fit appear to be
adequate?

b. Obtain the residuals and plot them against the fitted values and against X on separate graphs.
Also obtain a normal probability plot. What do your plots show about the adequacy of the
regression model?

*13.15. Refer to Drug responsiveness Problem 13.13. Assume that large-sample inferences are ap-
propriate here. Conduct a formal approximate test for lack of fit of the nonlinear regression
function; use α = .01. State the alternatives, decision rule, and conclusion.

*13.16. Refer to Drug responsiveness Problem 13.13. Assume that the fitted model is appropriate
and that large-sample inferences can be employed here. Obtain approximate joint confidence
intervals for the parameters γ0, γ1, and γ2 using the Bonferroni procedure with a 91 percent
family confidence coefficient. Interpret your results.

13.17. Process yield. The yield (Y ) of a chemical process depends on the temperature (X1) and
pressure (X2). The following nonlinear regression model is expected to be applicable:

Yi = γ0(Xi1)
γ1(Xi2)

γ2 + εi

Prior to beginning full-scale production, 18 tests were undertaken to study the process yield
for various temperature and pressure combinations. The results follow.

i : 1 2 3 . . . 16 17 18

Xi 1: 1 10 100 . . . 1 10 100
Xi 2: 1 1 1 . . . 100 100 100
Yi : 12 32 103 . . . 43 128 398

a. To obtain starting values for γ0, γ1, and γ2, note that when we ignore the random error term,
a logarithmic transformation yields Y ′

i = β0 + β1 X ′
i1 + β1 X ′

i2, where Y ′
i = log10 Yi , β0 =

log10 γ0, β1 = γ1, X ′
i1 = log10 Xi1, β2 = γ2, and X ′

i2 = log10 Xi2. Fit a first-order multiple
regression model to the transformed data, and use as starting values g(0)

0 = antilog10 b0,
g(0)

1 = b1, and g(0)
2 = b2.

b. Using the starting values obtained in part (a), find the least squares estimates of the param-
eters γ0, γ1, and γ2.

13.18. Refer to Process yield Problem 13.17.

a. Plot the estimated nonlinear regression function and the data. Does the fit appear to be
adequate?

b. Obtain the residuals and plot them against Ŷ , X1, and X2 on separate graphs. Also obtain
a normal probability plot. What do your plots show about the adequacy of the model?

13.19. Refer to Process yield Problem 13.17. Assume that large-sample inferences are appropriate
here. Conduct a formal approximate test for lack of fit of the nonlinear regression function;
use α = .05. State the alternatives, decision rule, and conclusion.

13.20. Refer to Process yield Problem 13.17. Assume that the fitted model is appropriate and that
large-sample inferences are applicable here.

a. Test the hypotheses H0: γ1 = γ2 against Ha : γ1 �= γ2 using α = .05. State the alternatives,
decision rule, and conclusion.
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b. Obtain approximate joint confidence intervals for the parameters γ1 and γ2, using the
Bonferroni procedure and a 95 percent family confidence coefficient.

c. What do you conclude about the parameters γ1 and γ2 based on the results in parts (a)
and (b)?

Exercises 13.21. (Calculus needed.) Refer to Home computers Problem 13.5.

a. Obtain the least squares normal equations and show that they are nonlinear in the estimated
regression coefficients g0, g1, and g2.

b. State the likelihood function for the nonlinear regression model, assuming that the error
terms are independent N (0, σ 2).

13.22. (Calculus needed.) Refer to Enzyme kinetics Problem 13.10.

a. Obtain the least squares normal equations and show that they are nonlinear in the estimated
regression coefficients g0 and g1.

b. State the likelihood function for the nonlinear regression model, assuming that the error
terms are independent N (0, σ 2).

13.23. (Calculus needed.) Refer to Process yield Problem 13.17.

a. Obtain the least squares normal equations and show that they are nonlinear in the estimated
regression coefficients g0, g1, and g2.

b. State the likelihood function for the nonlinear regression model, assuming that the error
terms are independent N (0, σ 2).

13.24. Refer to Drug responsiveness Problem 13.13.

a. Assuming that E{εi } = 0, show that:

E{Y } = γ0

(
A

1 + A

)
where:

A = exp[γ1(loge X − loge γ2)] = exp(β0 + β1 X ′)

and β0 = −γ1 loge γ2, β1 = γ1, and X ′ = loge X .

b. Assuming γ0 is known, show that:

E{Y ′}
1 − E{Y ′} = exp(β0 + β1 X ′)

where Y ′ = Y/γ0.

c. What transformation do these results suggest for obtaining a simple linear regression
function in the transformed variables?

d. How can starting values for finding the least squares estimates of the nonlinear regression
parameters be obtained from the estimates of the linear regression coefficients?

Projects 13.25. Refer to Enzyme kinetics Problem 13.10. Starting values for finding the least squares estimates
of the nonlinear regression model parameters are to be obtained by a grid search. The following
bounds for the two parameters have been specified:

5 ≤ γ0 ≤ 65

5 ≤ γ1 ≤ 65
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Obtain 49 grid points by using all possible combinations of the boundary values and five other
equally spaced points for each parameter range. Evaluate the least squares criterion (13.15)
for each grid point and identify the point providing the best fit. Does this point give reasonable
starting values here?

13.26. Refer to Process yield Problem 13.17. Starting values for finding the least squares estimates of
the nonlinear regression model parameters are to be obtained by a grid search. The following
bounds for the parameters have been postulated:

1 ≤ γ0 ≤ 21

.2 ≤ γ1 ≤ .8

.1 ≤ γ2 ≤ .7

Obtain 27 grid points by using all possible combinations of the boundary values and the
midpoint for each of the parameter ranges. Evaluate the least squares criterion (13.15) for
each grid point and identify the point providing the best fit. Does this point give reasonable
starting values here?

13.27. Refer to Home computers Problem 13.5.

a. To check on the appropriateness of large-sample inferences here, generate 1,000 bootstrap
samples of size 16 using the fixed X sampling procedure. For each bootstrap sample, obtain
the least squares estimates g∗

0 , g∗
1 , and g∗

2 .

b. Plot histograms of the bootstrap sampling distributions of g∗
0 , g∗

1 , and g∗
2 . Do these distri-

butions appear to be approximately normal?

c. Compute the means and standard deviations of the bootstrap sampling distributions for g∗
0 ,

g∗
1 , and g∗

2 . Are the bootstrap means and standard deviations close to the final least squares
estimates?

d. Obtain a confidence interval for γ1 using the reflection method in (11.59) and confidence
coefficient .9667. How does this interval compare with the one obtained in Problem 13.8
by the large-sample inference method?

e. What are the implications of your findings in parts (b), (c), and (d) about the appropriateness
of large-sample inferences here? Discuss.

13.28. Refer to Enzyme kinetics Problem 13.10.

a. To check on the appropriateness of large-sample inferences here, generate 1,000 bootstrap
samples of size 18 using the fixed X sampling procedure. For each bootstrap sample, obtain
the least squares estimates g∗

0 and g∗
1 .

b. Plot histograms of the bootstrap sampling distributions of g∗
0 and g∗

1 . Do these distributions
appear to be approximately normal?

c. Compute the means and standard deviations of the bootstrap sampling distributions for g∗
0

and g∗
1 . Are the bootstrap means and standard deviations close to the final least squares

estimates?

d. Obtain a confidence interval for γ0 using the reflection method in (11.59) and confidence
coefficient .95. How does this interval compare with the one obtained in Problem 13.12 by
the large-sample inference method?

e. What are the implications of your findings in parts (b), (c), and (d) about the appropriateness
of large-sample inferences here? Discuss.

13.29. Refer to Drug responsiveness Problem 13.13.

a. To check on the appropriateness of large-sample inferences here, generate 1,000 bootstrap
samples of size 19 using the fixed X sampling procedure. For each bootstrap sample, obtain
the least squares estimates g∗

0 , g∗
1 , and g∗

2 .
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b. Plot histograms of the bootstrap sampling distributions of g∗
0 , g∗

1 , and g∗
2 . Do these distri-

butions appear to be approximately normal?

c. Compute the means and standard deviations of the bootstrap sampling distributions for g∗
0 ,

g∗
1 , and g∗

2 . Are the bootstrap means and standard deviations close to the final least squares
estimates?

d. Obtain a confidence interval for γ2 using the reflection method in (11.59) and confidence
coefficient .97. How does this interval compare with the one obtained in Problem 13.16 by
the large-sample inference method?

e. What are the implications of your findings in parts (b), (c), and (d) about the appropriateness
of large-sample inferences here? Discuss.

13.30. Refer to Process yield Problem 13.17.

a. To check on the appropriateness of large-sample inferences here, generate 1,000 bootstrap
samples of size 18 using the fixed X sampling procedure. For each bootstrap sample, obtain
the least squares estimates g∗

0 , g∗
1 , and g∗

2 .

b. Plot histograms of the bootstrap sampling distributions of g∗
0 , g∗

1 , and g∗
2 . Do these distri-

butions appear to be approximately normal?

c. Compute the means and standard deviations of the bootstrap sampling distributions for g∗
0 ,

g∗
1 , and g∗

2 . Are the bootstrap means and standard deviations close to the final least squares
estimates?

d. Obtain a confidence interval for γ1 using the reflection method in (11.59) and confidence
coefficient .975. How does this interval compare with the one obtained in Problem 13.20b
by the large-sample inference method?

e. What are the implications of your findings in parts (b), (c), and (d) about the appropriateness
of large-sample inferences here? Discuss.

Case
Studies

13.31. Refer to the Prostate cancer data set in Appendix C.5 and Case Study 9.30. Select a random
sample of 65 observations to use as the model-building data set.

a. Develop a neural network model for predicting PSA. Justify your choice of number of
hidden nodes and penalty function weight and interpret your model.

b. Assess your model’s ability to predict and discuss its usefulness to the oncologists.

c. Compare the performance of your neural network model with that of the best regression
model obtained in Case Study 9.30. Which model is more easily interpreted and why?

13.32. Refer to the Real estate sales data set in Appendix C.7 and Case Study 9.31. Select a random
sample of 300 observations to use as the model-building data set.

a. Develop a neural network model for predicting sales price. Justify your choice of number
of hidden nodes and penalty function weight and interpret your model.

b. Assess your model’s ability to predict and discuss its usefulness as a tool for predicting
sales prices.

c. Compare the performance of your neural network model with that of the best regression
model obtained in Case Study 9.31. Which model is more easily interpreted and why?


